6533b820fe1ef96bd127a691
RESEARCH PRODUCT
Nanostructured Ni Based Anode and Cathode for Alkaline Water Electrolyzers
Rosalinda InguantaValentino CusumanoCarmelo SunseriTracy BaguetPhilippe MandinGiuseppe AielloFabrizio Gancisubject
Control and OptimizationMaterials scienceNanostructureHydrogen020209 energyEnergy Engineering and Power Technologychemistry.chemical_elementNanotechnology02 engineering and technologyElectrocatalystElectrosynthesiselectrocatalystslcsh:Technologynickeliridium oxideHydrogen economySettore ING-IND/17 - Impianti Industriali Meccanicinanostructures0202 electrical engineering electronic engineering information engineeringalkaline electrolyzersElectrical and Electronic EngineeringEngineering (miscellaneous)Energy carrierRenewable Energy Sustainability and the Environmentbusiness.industrylcsh:TOxygen evolutionElectrocatalyst021001 nanoscience & nanotechnologypalladiumcobaltAnodeNanowireSettore ING-IND/23 - Chimica Fisica Applicatachemistrynanowiresni-alloyWater splitting0210 nano-technologybusinessAlkaline electrolyzerfoamEnergy (miscellaneous)description
Owing to the progressive abandoning of the fossil fuels and the increase of atmospheric CO2 concentration, the use of renewable energies is strongly encouraged. The hydrogen economy provides a very interesting scenario. In fact, hydrogen is a valuable energy carrier and can act as a storage medium as well to balance the discontinuity of the renewable sources. In order to exploit the potential of hydrogen it must be made available in adequate quantities and at an affordable price. Both goals can be potentially achieved through the electrochemical water splitting, which is an environmentally friendly process as well as the electrons and water are the only reagents. However, these devices still require a lot of research to reduce costs and increase efficiency. An approach to improve their performance is based on nanostructured electrodes characterized by high electrocatalytic activity. In this work, we show that by using template electrosynthesis it is possible to fabricate Ni nanowires featuring a very high surface area. In particular, we found that water-alkaline electrolyzers with Ni nanowires electrodes covered by different electrocatalyst have good and stable performance at room temperature as well. Besides, the results concern nickel-cobalt nanowires electrodes for both hydrogen and oxygen evolution reaction will be presented and discussed. Finally, preliminary tests concerning the use of Ni foam differently functionalized will be shown. For each electrode, electrochemical and electrocatalytic tests aimed to establishing the performance of the electrolyzers were carried out. Long term amperostatic test carried out in aqueous solution of KOH will be reported as well.
year | journal | country | edition | language |
---|---|---|---|---|
2019-09-25 | Energies |