0000000000288832

AUTHOR

Valentino Cusumano

showing 6 related works from this author

Nanostructured Ni–Co alloy electrodes for both hydrogen and oxygen evolution reaction in alkaline electrolyzer

2021

Abstract Ni–Co alloy nanostructured electrodes with high surface area were investigated both as a cathode and anode for an alkaline electrolyzer. Electrodes were obtained by template electrosynthesis at room temperature. The electrolyte composition was tuned in order to obtain different NiCo alloys. The chemical and morphological features of nanostructured electrodes were evaluated by EDS, XRD and SEM analyses. Results show that electrodes with different composition of Ni and Co, made of nanowires well anchored to the substrate, were obtained. For both hydrogen and oxygen evolution reactions, electrochemical and electrocatalytic tests, performed in 30% w/w KOH aqueous solution, were carried…

Materials scienceHydrogenEnergy Engineering and Power Technologychemistry.chemical_element02 engineering and technology010402 general chemistryElectrosynthesisElectrochemistry01 natural sciencesSettore ING-INF/01 - Elettronicalaw.inventionlawSettore ING-IND/17 - Impianti Industriali MeccaniciTafel equationElectrolysisRenewable Energy Sustainability and the EnvironmentAlkaline water electrolysisOxygen evolution021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesAnodeFuel TechnologySettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringchemistry0210 nano-technologyAlkaline electrolyzer HER Nanostructured electrodes Ni–Co Alloy OER Template electrosynthesis
researchProduct

Ni alloy nanowires as high efficiency electrode materials for alkaline electrolysers

2021

Abstract The fabrication and characterization of nickel-alloy electrodes for alkaline electrolysers is reported. Three different alloys (Ni–Co, Ni–Zn and Ni–W) at different composition were studied in order to determine the optimum condition. Nanostructured electrodes were obtained by template electrodeposition into a nanoporous membrane, starting from aqueous solution containing the two elements of the alloy at different concentrations. Composition of alloys can be tuned by electrolyte composition and also depends on the difference of the redox potential of elements and on the presence of complexing agents in deposition bath. Electrochemical and electrocatalytic tests, aimed at establishin…

Materials scienceFabricationAlloyNanowireEnergy Engineering and Power Technology02 engineering and technologyengineering.material010402 general chemistryElectrochemistry01 natural sciencesRedoxchemistry.chemical_compoundSettore ING-IND/17 - Impianti Industriali MeccaniciAlkaline electrolyzer Nanostructured electrodes Ni–Co Alloy Template electrosynthesisPotassium hydroxideAqueous solutionRenewable Energy Sustainability and the Environmenttechnology industry and agricultureequipment and supplies021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSettore ING-IND/23 - Chimica Fisica ApplicataFuel TechnologyChemical engineeringchemistryElectrodeengineering0210 nano-technologyInternational Journal of Hydrogen Energy
researchProduct

Nanostructured Ni Based Anode and Cathode for Alkaline Water Electrolyzers

2019

Owing to the progressive abandoning of the fossil fuels and the increase of atmospheric CO2 concentration, the use of renewable energies is strongly encouraged. The hydrogen economy provides a very interesting scenario. In fact, hydrogen is a valuable energy carrier and can act as a storage medium as well to balance the discontinuity of the renewable sources. In order to exploit the potential of hydrogen it must be made available in adequate quantities and at an affordable price. Both goals can be potentially achieved through the electrochemical water splitting, which is an environmentally friendly process as well as the electrons and water are the only reagents. However, these devices stil…

Control and OptimizationMaterials scienceNanostructureHydrogen020209 energyEnergy Engineering and Power Technologychemistry.chemical_elementNanotechnology02 engineering and technologyElectrocatalystElectrosynthesiselectrocatalystslcsh:Technologynickeliridium oxideHydrogen economySettore ING-IND/17 - Impianti Industriali Meccanicinanostructures0202 electrical engineering electronic engineering information engineeringalkaline electrolyzersElectrical and Electronic EngineeringEngineering (miscellaneous)Energy carrierRenewable Energy Sustainability and the Environmentbusiness.industrylcsh:TOxygen evolutionElectrocatalyst021001 nanoscience & nanotechnologypalladiumcobaltAnodeNanowireSettore ING-IND/23 - Chimica Fisica Applicatachemistrynanowiresni-alloyWater splitting0210 nano-technologybusinessAlkaline electrolyzerfoamEnergy (miscellaneous)Energies
researchProduct

Performance Enhancement of Alkaline Water Electrolyzer Using Nanostructured Electrodes Synthetized by Template Electrosynthesis

2018

The increase of power generation by renewable sources is causing problems in the management of the electricity grid. In order to favor the transition from the current energy production towards renewable energy sources, it is necessary to plan strategy to develop suitable energy storage systems. Certainly, the electrochemical hydrogen production can be considered as one of the most promising storage technologies. In this work, an innovative alkaline electrolyzer is presented from its design based on the use of nanostructured electrodes up to its implementation suggested by the results of tests simulating real operation. The nanostructured electrodes were fabricated by template electrosynthes…

Materials scienceEnergy storagehydrogen productionnanowires nichel cobalt alloy 3D printed cell water splitting hydrogen alkaline electrolysiEnergy Engineering and Power TechnologyNanotechnologyElectrochemistryElectrosynthesisEnergy storageIndustrial and Manufacturing Engineeringlaw.inventionlawArtificial IntelligenceInstrumentationHydrogen productionElectrolysisbusiness.industryRenewable Energy Sustainability and the Environmentnanostructured materialAlkaline water electrolysisComputer Science Applications1707 Computer Vision and Pattern RecognitionRenewable energyElectricity generationComputer Networks and CommunicationSettore ING-IND/23 - Chimica Fisica Applicatabusiness
researchProduct

Nanostructured Ni-Co Alloy Electrodes Fabrication and Characterization for both Hydrogen and Oxygen Evolution Reaction in Alkaline Electrolyzer

2019

Sun and wind as power sources are becoming more and more relevant owing to the progressive abandoning of the fossil fuels [1,2]. Additionally, worldwide public authorities are encouraging the use of renewable energies by promoting laws and guidelines [3,4]. In this scenario, a fundamental role can play hydrogen that besides being a valuable energy carrier, it can also act as a storage medium to balance the discontinuity affecting the renewable energy sources production [5]. As a consequence, cheap and abundant availability of hydrogen is crucial. Electrochemical water splitting is likely one of the most valuable technique to produce hydrogen because the process is environmentally friendly b…

Settore ING-IND/23 - Chimica Fisica ApplicataAlkaline Electrolyzer Hydrogen Evolution Reaction Oxygen Evolution Reaction Nanostructured material Ni-Co Alloy
researchProduct

Ni-Based Alloy Nanostructured Electrodes for Alkaline Electrolyzers

In water alkaline electrolyzer field, the development of Nickel-based nanostructured electrode is one of the possible ways to improve the water electrolysis efficiency

Alkaline Electrolyzer Nanostructured Electrodes Ni-Co Alloy Ni-W alloy Ni-Zn alloy Template ElectrosynthesisSettore ING-IND/23 - Chimica Fisica ApplicataSettore ING-IND/17 - Impianti Industriali Meccanici
researchProduct