Search results for "electrochemical cell"

showing 10 items of 104 documents

Flexible light-emitting electrochemical cells with single-walled carbon nanotube anodes

2016

Abstract In this work, we demonstrate flexible solution processed light emitting electrochemical cells (LECs) which use single-walled carbon nanotubes (SWCNTs) films as the substrate. The SWCNTs were synthesized by an integrated aerosol method and dry-transferred on the plastic substrates at room temperature. The addition of a screen printed poly (3,4-ethylene dioxythiophene) doped with poly (styrene sulfonate) (PEDOT:PSS) film onto the nanostructured electrode further homogenizes the surface and enlarges the work function, enhancing the hole injection into the active layer. By using an efficient phosphorescent ionic transition metal complex (iTMC) as the active material, efficacies up to 9…

Materials scienceLight-emitting electrochemical cellsFlexible devices02 engineering and technologySubstrate (electronics)Carbon nanotubeElectroluminescence010402 general chemistry01 natural sciencesElectrochemical celllaw.inventionBiomaterialsPEDOT:PSSlawSWCNTsMaterials ChemistryOLEDWork functionElectrical and Electronic Engineeringta114business.industryOLEDsGeneral ChemistryTransition metal complex021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesElectronic Optical and Magnetic MaterialsElectroluminescenceElectrodeOptoelectronics0210 nano-technologybusinessORGANIC ELECTRONICS
researchProduct

Influence of magnesium content on the corrosion resistance of the cut-edges of Zn–Mg-coated steel

2015

Abstract The ability of Zn–Mg coatings (with magnesium content between 5.8 and 15.5 wt.%) to protect steel sheets has been evaluated with local electrochemical techniques (scanning vibrating electrode technique, microcapillary electrochemical cell) and rotating disk electrode, and compared with the corrosion protection afforded by a pure zinc coating. From immersion tests of coated steel cut-edges, it is observed that alloying zinc with magnesium leads to a decrease of the galvanic current between the coating and the steel surface, and to an improvement of the steel corrosion resistance after a drying period, due to the presence of magnesium in the corrosion products.

Materials scienceMagnesiumGeneral Chemical EngineeringMetallurgytechnology industry and agriculturechemistry.chemical_elementGeneral ChemistryZincengineering.materialElectrochemistryElectrochemical cellCorrosionCoatingchemistryGalvanic cellengineeringGeneral Materials ScienceRotating disk electrodeCorrosion Science
researchProduct

Light-emitting electrochemical cells: recent progress and future prospects

2014

We provide a short review on light-emitting electrochemical cells (LECs), one of the simplest kinds of electroluminescent devices. In their simplest form, they consist of just one active layer containing an emitter and a salt. They operate with low voltages, which allows for high power efficiencies, and air-stable electrodes, which simplifies the encapsulation requirements. The aim of this review is to highlight the recent advances and the main remaining challenges. We describe the current understanding of their peculiar operation mechanism and focus on the major concepts used to improve their performance.

Materials scienceMaterials Science(all)Mechanics of MaterialsMechanical EngineeringGeneral Materials ScienceNanotechnologyElectroluminescenceCondensed Matter PhysicsElectrochemical cellActive layerCommon emitterMaterials Today
researchProduct

Long-Living Light-Emitting Electrochemical Cells - Control through Supramolecular Interactions

2008

Light-emitting electrochemical cells with lifetimes surpassing 3000 hours at an average luminance of 200 cd m(-2) are obtained with an ionic iridium(III) complex conveniently designed to form a supramolecularly caged structure.

Materials scienceMechanical EngineeringSupramolecular chemistrychemistry.chemical_elementIonic bondingPhotochemistryLuminanceElectrochemical cellOrganic semiconductorchemistryMechanics of MaterialsOLEDGeneral Materials ScienceIridiumAdvanced Materials
researchProduct

Atomic scale surface modification of TiO2 3D nano-arrays: plasma enhanced atomic layer deposition of NiO for photocatalysis

2021

Here we report the development of a new scalable and transferable plasma assisted atomic layer deposition (PEALD) process for the production of uniform, conformal and pinhole free NiO with sub-nanometre control on a commercial ALD reactor. In this work we use the readily available nickel precursor nickelocene in conjunction with O2 plasma as a co-reagent (100 W) over a temperature range of 75–325 °C. An optimised growth per cycle of 0.036 nm was obtained at 250 °C with uniform thickness and coverage on scale-up to and including an 6 inch Si wafer (with a 200 nm thermal SiO2 top layer). The bulk characteristics of the NiO thin films were comprehensively interrogated by PXRD, Raman spectrosco…

Materials scienceNon-blocking I/O02 engineering and technologyPhotoelectrochemical cell010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesAtomic layer depositionsymbols.namesakeX-ray photoelectron spectroscopyChemical engineeringChemistry (miscellaneous)symbolsGeneral Materials ScienceNanorodThin film0210 nano-technologyRaman spectroscopyLayer (electronics)Materials Advances
researchProduct

Temperature Effect of Ionic Transition Metal Complex Light-Emitting Electrochemical Cells

2013

ABSTRACTLight-Emitting Electrochemical Cells (LECs) consist of solution processable ionic light-emitting materials and use air stable electrodes. Their operational mechanism relies on both ionic and electronic conduction. The dynamic behavior is primarily determined by the ionic conductivity. Here, we demonstrate that with increasing temperature the LECs turn-on faster yet without decreasing the efficiency. This is due to the activation energy of ionic transport and the temperature independent photoluminescence quantum yields.

Materials sciencePhotoluminescenceChemical engineeringTransition metalElectrodeIonic conductivityIonic bondingActivation energyLuminescencePhotochemistryElectrochemical cellMRS Proceedings
researchProduct

CF3 Substitution of [Cu(P^P)(bpy)][PF6 ] Complexes: Effects on Photophysical Properties and Light-Emitting Electrochemical Cell Performance

2018

Herein, [Cu(P^P)(N^N)][PF6 ] complexes (P^P=bis[2-(diphenylphosphino)phenyl]ether (POP) or 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos); N^N=CF3 -substituted 2,2'-bipyridines (6,6'-(CF3 )2 bpy, 6-CF3 bpy, 5,5'-(CF3 )2 bpy, 4,4'-(CF3 )2 bpy, 6,6'-Me2 -4,4'-(CF3 )2 bpy)) are reported. The effects of CF3 substitution on their structure as well as their electrochemical and photophysical properties are also presented. The HOMO-LUMO gap was tuned by the N^N ligand; the largest redshift in the metal-to-ligand charge transfer (MLCT) band was for [Cu(P^P){5,5'-(CF3 )2 bpy}][PF6 ]. In solution, the compounds are weak yellow to red emitters. The emission properties depend on the substitu…

Materials sciencePhotoluminescenceLigandXantphosQuantum yield02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceschemistry.chemical_compoundCrystallographychemistryExcited stateSinglet stateLight-emitting electrochemical cell0210 nano-technologyTetrahydrofuranChemPlusChem
researchProduct

Stable and Efficient Solid-State Light-Emitting Electrochemical Cells Based on a Series of Hydrophobic Iridium Complexes

2011

Light-emitting electrochemical cells (LECs) based on ionic transition-metal complexes (iTMCs) exhibiting high efficiency, short turn-on time, and long stability have recently been presented. Furthermore, LECs emitting in the full range of the visible spectrum including white light have been reported. However, all these achievements were obtained individually, not simultaneously, using in each case a different iTMC. In this work, device stability is maintained by employing intrinsically stable ionic iridium complexes, while increasing the complex and the device quantum yields for exciton-to-photon conversion. This is done by sequentially modifying the archetype ionic iridium complex [Ir(ppy)…

Materials sciencePhotoluminescenceRenewable Energy Sustainability and the EnvironmentLigandIonic bondingQuantum yieldchemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciences0104 chemical sciencesElectrochemical cellchemistryGeneral Materials ScienceLight-emitting electrochemical cellIridium0210 nano-technologyVisible spectrumAdvanced Energy Materials
researchProduct

Low Current Density Driving Leads to Efficient, Bright and Stable Green Electroluminescence

2013

Electroluminescent devices have the potential to reshape lighting and display technologies by providing low-energy consuming solutions with great aesthetic features, such as flexibility and transparency. In particular, light-emitting electrochemical cells (LECs) are among the simplest electro-luminescent devices. The device operates with air-stable materials and the active layer can be resumed to an ionic phosphorescent emitter. As a consequence, LECs can be assembled using solution-process technologies, which could allow for low-cost and large-area lighting applications in the future. High efficiencies have been reported at rather low luminances (<50 cd m(-2)) and at very low current densi…

Materials scienceRenewable Energy Sustainability and the Environmentbusiness.industryElectroluminescenceLuminanceElectrochemical cellActive layerDuty cycleOptoelectronicsGeneral Materials SciencebusinessPhosphorescenceCurrent densityCommon emitterAdvanced Energy Materials
researchProduct

Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications

2016

Utilizing plasmonic nanostructures for efficient and flexible conversion of solar energy into electricity or fuel presents a new paradigm in photovoltaics and photoelectrochemistry research. In a conventional photoelectrochemical cell, consisting of a plasmonic structure in contact with a semiconductor, the type of photoelectrochemical reaction is determined by the band bending at the semiconductor/electrolyte interface. The nature of the reaction is thus hard to tune. Here instead of using a semiconductor, we employed a ferroelectric material, Pb(Zr,Ti)O3 (PZT). By depositing gold nanoparticle arrays and PZT films on ITO substrates, and studying the photocurrent as well as the femtosecond …

Materials scienceSciencePhotoelectrochemistryGeneral Physics and AstronomyNanotechnology02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyGeneral Biochemistry Genetics and Molecular BiologyArticlePhotovoltaicsddc:530Polarization (electrochemistry)PhotocurrentMultidisciplinarybusiness.industryQGeneral ChemistryPhotoelectrochemical cell021001 nanoscience & nanotechnologyFerroelectricity0104 chemical sciencesBand bendingSemiconductor0210 nano-technologybusinessNature Communications
researchProduct