Search results for "electrodeposition"

showing 10 items of 104 documents

ZnO Nanoestructured Layers Processing with Morphology Control by Pulsed Electrodeposition

2011

The fabrication of nanostructured ZnO thin films is a critic process for a lot of applications of this semiconductor material. The final properties of this film depend fundamentally of the morphology of the sintered layer. In this paper a process is presented for the fabrication of ZnO nanostructured layers with morphology control by pulsed electrodeposition over ITO. Process optimization is achieved by pulsed electrodeposition and results are assessed after a careful characterization of both morphology and electrical properties. SEM is used for nucleation analysis on pulsed deposited samples. Optical properties like transmission spectra and Indirect Optical Band Gap are used to evaluate th…

INGENIERIA DE LA CONSTRUCCIONFabricationMaterials scienceBand gapThin-FilmsZinc-OxideNucleationNanotechnologySolar-CellsCrystalline SiliconCIENCIA DE LOS MATERIALES E INGENIERIA METALURGICAMaterials ChemistryElectrochemistryProcess optimizationCrystalline siliconThin filmDepositionDeposition (law)Ciencias ExactasRenewable Energy Sustainability and the Environmentpulsed electrodepositionOptical-PropertiesFísicaCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOxygennanostructured ZnO thin filmsFISICA APLICADALayer (electronics)
researchProduct

Electrochemical Deposition Mechanism for ZnO Nanorods: Diffusion Coefficient and Growth Models

2011

Fabrication of nanostructured ZnO thin films is a critical process for many applications based on semiconductor devices. So on understanding of the electrochemical deposition mechanism is also fundamental for knowing the optimal conditions on growth of ZnO nanorods by electrodeposition. In this paper the electrochemical mechanism for ZnO nanorods formation is studied. Results are based on the evolution of the diffusion coefficient using the Cotrell equation, and different growth models proposed by Scharifcker and Hills for nucleation and growth.

INGENIERIA DE LA CONSTRUCCIONMaterials scienceThin-FilmsDiffusionZinc-OxideInorganic chemistrychemistry.chemical_elementZincElectrochemistryCIENCIA DE LOS MATERIALES E INGENIERIA METALURGICAMaterials ChemistryElectrochemistryDeposition (phase transition)Thin filmRenewable Energy Sustainability and the Environmentbusiness.industryOptical-PropertiesCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSemiconductorchemistrySemiconductorsFISICA APLICADACathodic ElectrodepositionNanorodbusiness
researchProduct

Lead Nanowires for Microaccumulators Obtained Through Indirect Electrochemical Template Deposition

2010

Metallic lead nanowires were deposited within pores of commercial anodic alumina membranes having an average pore diameter of 210 nm. "Direct" electrodeposition was attempted from 0.1 M Pb(NO 3 ) 2 aqueous solution with a variable concentration of H 3 BO 3 as a chelating agent, but it gave unsatisfactory results. An "indirect" two-step deposition procedure was then adopted, consisting of the anodic electrodeposition of α-PbO 2 nanowires, followed by their in situ reduction to metallic lead. Both these processes occurred at a high rate so that the indirect method led to a complete template pore filling with pure polycrystalline Pb in short times and with a high current efficiency.

In situAqueous solutionMaterials scienceGeneral Chemical EngineeringNanowireNanotechnologyElectrochemistryAnodeLead Nanowires; Lead-acid Batteries; Template Synthesis; Electrodeposition; Anodic Alumina MembranesSettore ING-IND/23 - Chimica Fisica ApplicataElectrodepositionChemical engineeringLead-acid BatterieTemplate SynthesiLead NanowireElectrochemistryGeneral Materials ScienceChelationCrystalliteElectrical and Electronic EngineeringPhysical and Theoretical ChemistryAnodic Alumina MembranesDeposition (law)
researchProduct

Template electrosynthesis of La(OH)3 and Nd(OH)3 nanowires using porous anodic alumina membranes

2007

High quality arrays of Ln(OH)3 (Ln = La, Nd) nanowires have been successfully fabricated for the first time by an electrochemical process using anodic alumina membrane templates. A physico-chemical characterisation of electrodeposited hydroxides has been carried out by different techniques (XRD, SEM and EDX). The results show that the synthesized nanostructures are crystalline, dense, continuous, well aligned, and with high aspect ratio, suggesting further development of possible applications in the lanthanide family species. Keywords: Nanowires, Anodic alumina membranes, Hydroxide electrodeposition, Template, Lanthanide compounds

LanthanideNanostructureMaterials scienceAnodic alumina membranes Hydroxide electrodeposition Lanthanide compounds Nanowires TemplateScanning electron microscopeNanowireMineralogytemplatelanthanide compoundsElectrosynthesisElectrochemistrylcsh:ChemistryMembraneSettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringlcsh:Industrial electrochemistrylcsh:QD1-999hydroxide electrodepositionnanowires; anodic alumina membranes; hydroxide electrodeposition; template; lanthanide compoundsnanowireX-ray crystallographyElectrochemistryanodic alumina membranelcsh:TP250-261
researchProduct

Nanostructured lead-acid negative electrode with reduced graphene oxide

2021

Aim of this work is to develop a new nano-structured and nano-composite lead acid negative electrode with reduced graphene oxide (rGO). Nanostructured electrodes are fabricated by template electrodeposition of lead nanowires on a lead current collector. A polycarbonate track-etched membrane was used as a template (200 nm mean pores diameter). rGO was deposited on the nanostructured electrode from a graphene oxide (GO) dispersion in acetate buffer solution (ABS) (0.2 g/L). Potentiostatic deposition of rGO at -0.8 V vs. standard calomel electrode (SCE) was performed. Electrode with rGO was tested as negative electrode in cell with 5M sulfuric acid solution, a commercial pasted positive plate,…

Lead-acid batteriesNegative electrodeReduced graphene-oxideSettore ING-IND/23 - Chimica Fisica ApplicataHigh C-rateTemplate electrodepositionNanostructures
researchProduct

Novel TiO2-WO3 self-ordered nanotubes used as photoanodes: Influence of Na2WO4 and H2O2 concentration during electrodeposition

2021

[EN] Hybrid TiO2-WO3 nanostructures has been synthesized by electrochemical anodization under controlled hydrodynamic conditions followed by electrodeposition in the presence of different contents of Na2WO4 (5, 15 and 25 mM) and H2O2 (20, 30 and 40 mM). The influence of the electrolyte used for electrodeposition on the morphology, crystalline structure and photoelectrochemical response for water splitting has been evaluated through Field Emission Electronic Microscopy, High-Resolution Transmission Electron Microscopy, Confocal Raman Spectroscopy, Grazing Incidence X Ray Diffraction, X-Ray Photoelectron Spectroscopy, Atomic Force microscopy and photocurrent versus potential measurements. Add…

Materials science02 engineering and technologyElectrolyte010402 general chemistry01 natural sciencesINGENIERIA QUIMICAX-ray photoelectron spectroscopyElectrodepositionMaterials ChemistryTiO2-WO3 nanostructuresWater splittingPhotocurrentAnodizingHeterojunctionSurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmsField electron emissionChemical engineeringTransmission electron microscopyWater splittingPhotoelectrocatalysisAnodization0210 nano-technology
researchProduct

One-step electrodeposition of superhydrophobic coating on 316L stainless steel

2021

Superhydrophobic coatings were fabricated through a one-step electrochemical process onto the surface of 316L stainless steel samples. The presence of hierarchical structures at micro/nanoscale and manganese stearate into the coatings gave superhydrophobicity to the coating, with contact angle of ~160°, and self-cleaning ability. Corrosion resistance of 316L samples was also assessed also after the electrodeposition process through Electrochemical Impedance Spectra recorded in an aqueous solution mimicking seawater condition.

Materials science316L Electrodeposition Self-cleaning Stainless steel Stearic acid superhydrophobicitychemistry.chemical_elementOne-StepManganeseengineering.materialCorrosionContact anglechemistry.chemical_compoundCoatingStearate316LGeneral Materials ScienceComposite materialstainless steelAqueous solutionMining engineering. MetallurgyMetals and AlloysTN1-997stearic acidSuperhydrophobic coatingSettore ING-IND/23 - Chimica Fisica Applicatachemistryengineeringelectrodepositionself-cleaningsuperhydrophobicity
researchProduct

Anodic alumina membranes as template for the synthesis of 1-D metal oxide and hydroxide nanostructures

2008

Anodic alumina membranes with highly ordered cylindrical pores and tuneable geometry have been prepared (pore diameters=20−200 nm; pore density 1012-1014 pores/m2; thickness: 20-100 mm) by controlling the anodizing process of aluminum in phosphoric, oxalic and sulphuric acid. The influence of different parameters (initial treatment of aluminium surface, composition of electrolyte, temperature and applied potential) on the final characteristics of the membranes have been investigated. The use anodic alumina membranes as template for the electrosynthesis of some metal hydroxides and oxides 1-D nanostructures (nanowires and nanotubes) will be also proved.

Materials scienceAnodizingInorganic chemistryGeneral EngineeringOxidechemistry.chemical_elementElectrolyteAnodic alumina membranes Hydroxides Nanotubes Nanowires Template electrodepositionElectrosynthesisMetalchemistry.chemical_compoundMembranechemistryAluminiumvisual_artvisual_art.visual_art_mediumHydroxide
researchProduct

One-step electrochemical synthesis and physico-chemical characterization of CdSe nanotubes

2013

Abstract Stoichiometric CdSe nanotubes (NTs) with a length of ∼700 nm have been successfully grown by one-step electrochemical technique into anodic alumina membranes. Cyclovoltammetric method has been performed using porous anodic alumina as template electrode and an electrochemical bath containing Cd 2+ ions and SeO 2 . The as-prepared NTs have been identified as face-centred-cubic CdSe by XRD, while micro-Raman analysis reveals the typical peaks of nanostructured CdSe. The stoichiometric deposition of CdSe NTs formation is suggested by EDX analysis, with an average atomic percentage of Cd:Se of ∼0.93. Photoelectrochemical measurements reveal that CdSe NTs are photoactive materials with d…

Materials scienceCadmium selenideElectrochemical synthesis physico-chemical characterization CdSe nanotubesChalcogenideGeneral Chemical EngineeringInorganic chemistrytemplateOne-StepElectrochemistrychalcogenidechemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica ApplicatachemistryElectrodenanotubeelectrodepositionElectrochemistrycadmium selenideDirect and indirect band gapsAnodic Alumina MembranesDeposition (law)StoichiometryElectrochimica Acta
researchProduct

Optical and magnetic properties of ZnCoO thin films synthesized by electrodeposition

2008

Ternary Zn1−xCoxO crystalline films with different compositions were grown by electrodeposition. The Co content in the final compound is linked to the initial Co/Zn ratio in the starting solution. X-ray diffraction reveals a wurtzite structure for the Zn1−xCoxO films. Transmittance spectra show two effects proportional to Co content, a redshift of the absorption edge and three absorption bands, which are both interpreted to be due to the Co incorporated into the ZnO lattice. The amount of deposited charge was used to get a precise control of the film thickness. Magnetic measurements point out that Co(II) ions are isolated from each other, and consequently the films are paramagnetic. Francis…

Materials scienceCobalt ; Electrodeposition ; Magnetic susceptibility ; Magnetic thin films ; Magnetisation ; Paramagnetic materials ; Semiconductor growth ; Semiconductor thin films ; Semimagnetic semiconductors ; Zinc compoundsParamagnetic materialsAnalytical chemistryUNESCO::FÍSICAGeneral Physics and AstronomySemiconductor thin filmsMagnetic semiconductorCobaltSemiconductor growthMagnetic susceptibilityMagnetic susceptibilityMagnetizationParamagnetismNuclear magnetic resonanceMagnetic thin filmsMagnetisationAbsorption edgeElectrodeposition:FÍSICA [UNESCO]Semimagnetic semiconductorsZinc compoundsThin filmTernary operationWurtzite crystal structure
researchProduct