Search results for "electrolytes"
showing 10 items of 84 documents
Dynamic heterogeneity in polymer electrolytes. Comparison between QENS data and MD simulations
2001
Abstract We have investigated the dynamics of poly(ethylene oxide) (PEO) lithium-based salt electrolytes (PEO–LiBETI) using quasi-elastic neutron scattering (QENS). Measurements were carried out on the spectrometer NEAT (HMI, Berlin) above the melting temperature of PEO ( T m ≈65°C). The experimental data fully support the Molecular Dynamics (MD)-derived model of a heterogeneous dynamics in dilute PEO-salt electrolytes. In agreement with MD simulations carried out on PEO–LiPF 6 , we find evidences for the existence of two dynamic processes: (a) a faster process that is described in terms of the pure PEO dynamics and (b) a second component which we identify with the slower motion of the PEO …
Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes
2020
[EN] The study of proton conductivity processes has received increasing attention in the past decades due to their potential applications in fields such as electrochemical devices and fuel cells. Despite the high number of composite membranes which have been described for this purpose, fundamental studies of the conduction phenomena in polymeric membranes are scarce. In this article, we study on the effect of the anion on ionic conductivity of ionic liquid composite polybenzimidazole (PBI) membranes. These membranes, which contain 1-butyl-3-methylimidazolium (BMIM) with different counterions ([Cl]-, [NCS]-, [NTf2]- and [BF4]-) were analyzed by electrochemical impedance spectroscopy (EIS) in…
ZnO/ZnS heterostructures for hydrogen production by photoelectrochemical water splitting
2016
This work studies the photoelectrochemical behavior of novel ZnO/ZnS heterostructures obtained by means of anodization in water and glycerol/water/NH4F electrolytes with different Na2S additions under controlled hydrodynamic conditions. For this purpose different techniques such as Field Emission Scanning Electronic Microscopy (FE-SEM) with EDX, Raman spectroscopy and photoelectrochemical water splitting tests under standard AM 1.5 conditions have been carried out. The obtained results showed that the hydrodynamic conditions promoted an ordered nanotubular morphology which facilitates electron-hole separation and consequently, the photoelectrochemical activity for water splitting is enhance…
Novel tree-like WO3 nanoplatelets with very high surface area synthesized by anodization under controlled hydrodynamic conditions
2016
In the present work, a new WO3 nanostructure has been obtained by anodization in a H2SO4/NaF electrolyte under controlled hydrodynamic conditions using a Rotating Disk Electrode (RDE) configuration. Anodized samples were analyzed by means of Field Emission Scanning Electronic Microscopy (FESEM), Confocal Raman Microscopy and photoelectrochemical measurements. The new nanostructure, which consists of nanoplatelets clusters growing in a tree-like manner, presents a very high surface area exposed to the electrolyte, leading to an outstanding enhancement of its photoelectrochemical activity. Obtained results show that the size of nanostructures and the percentage of electrode surface covered by…
Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic li…
2010
Blends of PVDF-HFP and ionic liquids (ILs) are interesting for application as electrolytes in plastic Li batteries. They combine the advantages of the gel polymer electrolytes (GPEs) swollen by conventional organic liquid electrolytes with the nonflammability, and high thermal and electrochemical stability of ILs. In this work we prepare and characterize PVDF-HFP composite membranes swollen with a solution of LiTFSI in ether-functionalized pyrrolidinium-imide (PYRA12O1). The membranes are filled in with two different types of silica: i) mesoporous SiO2 (SBA-15) and a commercial nano-size one (HiSilTM T700). The ionic conductivity and the electrochemical properties of the gel electrolytes ar…
Electrochemical Characterization of Polyelectrolyte/Gold Nanoparticle Multilayers Self-Assembled on Gold Electrodes
2006
Polyelectrolyte/gold nanoparticle multilayers composed of poly(l-lysine) (pLys) and mercaptosuccinic acid (MSA) stabilized gold nanoparticles (Au NPs) were built up using the electrostatic layer-by-layer self-assembly technique upon a gold electrode modified with a first layer of MSA. The assemblies were characterized using UV-vis absorption spectroscopy, cyclic and square-wave voltammetry, electrochemical impedance spectroscopy, and atomic force microscopy. Charge transport through the multilayer was studied experimentally as well as theoretically by using two different redox pairs [Fe(CN)(6)](3-/4-) and [Ru(NH(3))(6)](3+/2+). This paper reports a large sensitivity to the charge of the out…
Novel biosensoric devices based on molecular protein hetero-multilayer films
1997
We have developed a novel concept for the modification of technical surfaces with molecularly well-organized layers of bioorganic components. A molecular construction set has been used to implement this concept which is based on molecularly stratified polyelectrolyte films as a structure decoupling protein layers from solid substrates. Utilizing this technology, one can start from a number of different substrates to obtain the same surface structures, on which protein hetero-multilayer films can be prepared to functionalize the interface for (potentially very different) purposes. We have demonstrated the viability of this concept by constructing a biosensor surface that was characterized by…
Current-Driven Organic Electrochemical Transistors for Monitoring Cell Layer Integrity with Enhanced Sensitivity
2021
In this progress report an overview is given on the use of the organic electrochemical transistor (OECT) as a biosensor for impedance sensing of cell layers. The transient OECT current can be used to detect changes in the impedance of the cell layer, as shown by Jimison et al. To circumvent the application of a high gate bias and preventing electrolysis of the electrolyte, in case of small impedance variations, an alternative measuring technique based on an OECT in a current-driven configuration is developed. The ion-sensitivity is larger than 1200 mV V-1 dec-1 at low operating voltage. It can be even further enhanced using an OECT based complementary amplifier, which consists of a p-type a…
Role of murine macrophages and complement in experimental campylobacter infection
1988
Summary. The roles of macrophages and the complement system as potential host defence mechanisms in mice against campylobacter infection were studied in vivo, by depleting the murine serum-complement or the phagocytic cells. Macrophage-depletion was performed by intraperitoneal (i.p.) injection of silica dust, Liquoid or dextran sulphate. During 5 days after infection, such mice showed a significant increase in mortality, compared with controls. In contrast, mice that were previously decomplemented by i.p. injection of Cobra Venom Factor showed no significant increase in mortality. The results with combined macrophage depletion and decomplementation did not differ from those with macrophage…
Ionic conduction, rectification, and selectivity in single conical nanopores
2006
Modern track-etching methods allow the preparation of membranes containing a single charged conical nanopore that shows high ionic permselectivity due to the electrical interactions of the surface pore charges with the mobile ions in the aqueous solution. The nanopore has potential applications in electrically assisted single-particle detection, analysis, and separation of biomolecules. We present a detailed theoretical and experimental account of the effects of pore radii and electrolyte concentration on the current-voltage and current-concentration curves. The physical model used is based on the Nernst-Planck and Poisson equations. Since the validity of continuum models for the descriptio…