Search results for "electronic-structure"
showing 4 items of 14 documents
Ferromagnetic kinetic exchange interaction in magnetic insulators
2020
The superexchange theory predicts dominant antiferromagnetic kinetic interaction when the orbitals accommodating magnetic electrons are covalently bonded through diamagnetic bridging atoms/groups. Here we show that explicit consideration of magnetic and (leading) bridging orbitals, together with the electron transfer between the former, reveals a strong ferromagnetic kinetic exchange contribution. First principle calculations show that it is comparable in strength with antiferromagnetic superexchange in a number of magnetic materials with diamagnetic metal bridges. In particular, it is responsible for a very large ferromagnetic coupling ($-10$ meV) between the iron ions in a Fe$^{3+}$-Co$^{…
Isotope Shifts of Radium Monofluoride Molecules
2021
Isotope shifts of $^{223-226,228}$Ra$^{19}$F were measured for different vibrational levels in the electronic transition $A^{2}{}{\Pi}_{1/2}\leftarrow X^{2}{}{\Sigma}^{+}$. The observed isotope shifts demonstrate the particularly high sensitivity of radium monofluoride to nuclear size effects, offering a stringent test of models describing the electronic density within the radium nucleus. Ab initio quantum chemical calculations are in excellent agreement with experimental observations. These results highlight some of the unique opportunities that short-lived molecules could offer in nuclear structure and in fundamental symmetry studies.
Electrochemistry of Bis(pyridine)cobalt (Nitrophenyl)corroles in Nonaqueous Media
2018
International audience; A series of bis(pyridine)cobalt corroles with one or three nitrophenyl groups on the meso positions of the corrole macrocycle were synthesized and characterized as to their electrochemical and spectroscopic properties in dichloromethane, benzonitrile, and pyridine. The potentials for each electrode reaction were measured by cyclic voltammetry and the electron-transfer mechanisms evaluated by analysis of the electrochemical data combined with UV-visible spectra of the neutral, electroreduced, and electroxidized forms of the corroles. The proposed electronic configurations of the initial compounds and the prevailing redox reactions involving the electroactive central c…
Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems
2020
Over the last few years, extraordinary advances in experimental and theoretical tools have allowed us to monitor and control matter at short time and atomic scales with a high degree of precision. An appealing and challenging route toward engineering materials with tailored properties is to find ways to design or selectively manipulate materials, especially at the quantum level. To this end, having a state-of-the-art ab initio computer simulation tool that enables a reliable and accurate simulation of light-induced changes in the physical and chemical properties of complex systems is of utmost importance. The first principles real-space-based Octopus project was born with that idea in mind,…