Search results for "electrospinning"
showing 10 items of 105 documents
Antiviral properties of silver nanoparticles against norovirus surrogates and their efficacy in coated polyhydroxyalkanoates systems
2017
Silver nanoparticles (AgNP) have strong broad-spectrum antimicrobial activity and gained increased attention for the development of AgNP based products, including medical and food applications. Initially, the efficacy of AgNP and silver nitrate (AgNO3) was evaluated for inactivating norovirus surrogates, the feline calicivirus (FCV) and the murine norovirus (MNV). These norovirus surrogates were exposed to AgNO3 and AgNP solutions for 24 h at 25 °C and then analyzed by cell-culture assays. Both AgNP and silver ions significantly decreased FCV and MNV infectivity in a dose-dependent manner between concentrations of 2.1 and 21 mg/L. Furthermore, poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (…
Electrospun poly(hydroxybutyrate) scaffolds promote engraftment of human skin equivalents via macrophage M2 polarization and angiogenesis.
2018
Human dermo-epidermal skin equivalents (DE) comprising in vitro expanded autologous keratinocytes and fibroblasts are a good option for massive burn treatment. However, the lengthy expansion time required to obtain sufficient surface to cover an extensive burn together with the challenging surgical procedure limits their clinical use. The integration of DE and biodegradable scaffolds has been proposed in an effort to enhance their mechanical properties. Here, it is shown that poly(hydroxybutyrate) electrospun scaffolds (PHB) present good biocompatibility both in vitro and in vivo and are superior to poly-epsilon-caprolactone electrospun scaffolds as a substrate for skin reconstruction. Impl…
Plasma modified PLA electrospun membranes for actinorhodin production intensification in Streptomyces coelicolor immobilized-cell cultivations
2017
Most of industrially relevant bioproducts are produced by submerged cultivations of actinomycetes. The immobilization of these Gram-positive filamentous bacteria on suitable porous supports may prevent mycelial cell-cell aggregation and pellet formation which usually negatively affect actinomycete submerged cultivations, thus, resulting in an improved biosynthetic capability. In this work, electrospun polylactic acid (PLA) membranes, subjected or not to O2-plasma treatment (PLA-plasma), were used as support for immobilized-cell submerged cultivations of Streptomyces coelicolor M145. This strain produces different bioactive compounds, including the blue-pigmented actinorhodin (ACT) and red-p…
Basement Membrane Mimics of Biofunctionalized Nanofibers for a Bipolar-Cultured Human Primary Alveolar-Capillary Barrier Model
2017
In vitro reconstruction of an alveolar barrier for modeling normal lung functions and pathological events serve as reproducible, high-throughput pharmaceutical platforms for drug discovery, diagnosis, and regenerative medicine. Despite much effort, the reconstruction of organ-level alveolar barrier functions has failed due to the lack of structural similarity to the natural basement membrane, functionalization with specific ligands for alveolar cell function, the use of primary cells and biodegradability. Here we report a bipolar cultured alveolar-capillary barrier model of human primary cells supported by a basement membrane mimics of fully synthetic bifunctional nanofibers. One-step elect…
Electrospinning of Bioactive Wound-Healing Nets
2017
The availability of appropriate dressings for treatment of wounds, in particular chronic wounds, is a task that still awaits better solutions than provided by currently applied materials. The method of electrospinning enables the fabrication of novel materials for wound dressings due to the high surface area and porosity of the electrospun meshes and the possibility to include bioactive ingredients. Recent results show that the incorporation of biologically active inorganic polyphosphate microparticles and microspheres and synergistically acting retinoids into electrospun polymer fibers yields biocompatible and antibacterial mats for potential dressings with improved wound-healing propertie…
Abdominal wall reconstruction by a regionally distinct biocomposite of extracellular matrix digest and a biodegradable elastomer.
2013
Current extracellular matrix (ECM) derived scaffolds offer promising regenerative responses in many settings, however in some applications there may be a desire for more robust and long lasting mechanical properties. A biohybrid composite material that offers both strength and bioactivity for optimal healing towards native tissue behavior may offer a solution to this problem. A regionally distinct biocomposite scaffold composed of a biodegradable elastomer (poly(ester urethane)urea) and porcine dermal ECM gel was generated to meet this need by a concurrent polymer electrospinning/ECM gel electrospraying technique where the electrosprayed component was varied temporally during the processing…
Core-shell Zn-doped TiO2-ZnO nanofibers fabricated via a combination of electrospinning and metal-organic chemical vapour deposition
2010
Zn-doped TiO2 nanofibers shelled with ZnO hierarchical nanoarchitectures have been fabricated combining electrospinning of TiO2 (anatase) nanofibers and metal-organic chemical vapor deposition (MOCVD) of ZnO. The proposed hybrid approach has proven suitable for tailoring both the morphology of the ZnO external shell as well as the crystal structure of the Zn-doped TiO2 core. It has been found that the Zn dopant is incorporated in calcined electrospun nanofibers without any evidence of ZnO aggregates. Effects of different Zn doping levels of Zn-doped TiO2 fibers have been scrutinized and morphological, structural, physico-chemical and optical properties evaluated before and after the hierarc…
Photoluminescence: A very sensitive tool to detect the presence of anatase in rutile phase electrospun TiO 2 nanofibers
2015
Abstract This paper reports on the synthesis and the characterization of titanium dioxide (TiO2) nanofibers prepared by electrospinning. The samples were annealed at various temperatures in air for 4 h. The as-spun and annealed TiO2/PVP composite nanofibers were characterized by scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy analysis (EDX), X-ray diffraction (XRD), Raman spectroscopy and photoluminescence (PL). The results show that the heat treatment has an effect on the crystallization process. Even if the XRD data shows a complete anatase-to-rutile transition in the TiO2 nanofibers at 900 °C, photoluminescence reveals a small portion of anatase in rutile sample.…
Novel antimicrobial ultrathin structures of zein/chitosan blends obtained by electrospinning
2009
Abstract This paper describes the formulation, morphology and biocide properties of novel antimicrobial electrospun zein based ultrathin fiber structures. From the results, it was found that the electrospun fibers of zein can turn the material into a new strong antimicrobial ultrathin-structured system due to retention of remnant amounts of trifluoroacetic acid as determined by ATR–FTIR spectroscopy. Unfortunately, this system may be considered to yield very aggressive high acidic media due to release of the strong acid, which causes the antimicrobial behavior. Nevertheless, since biocide properties are more desirable at mild acidic conditions, blending zein with the natural antimicrobial c…
PREPARATION AND CHARACTERIZATION OF BIOPOLYMERIC POROUS STRUCTURES FOR ADVANCED APPLICATIONS
Porous biopolymers received an increasing academic and industrial interest finding application in several fields such as tissue engineering, bioprocess intensification and waste removal. Tissue engineering combines the knowledge of materials science and bioengineering in order to develop structures able to substitute and restore the normal function of injured or diseased tissues. In this context, polymeric 3D or 2D scaffolds are widely investigated as temporary cell guidance during the tissue restore. Porous biomaterials can offer a versatile and cost effective way for immobilization of filamentous microorganisms in submerged fermentation processes for the production of biologically active …