Search results for "emissivity"
showing 10 items of 136 documents
Evaluation of Vertical Fatigue Cracks by Means of Flying Laser Thermography
2019
The present paper proposes a new procedure to analyze the temperature field distribution during Flying Laser Spot and Laser Line Thermographic scanning (FLST, FLLT) of metallic components, in order to detect vertical surface cracks. The methodology exploits the changes in the temperature field produced by a vertical crack, acting as a barrier towards heat diffusion, when the laser approaches the defect. A number of small regions of interests (ROIs) is placed nearby and around the laser source. The average temperature from each ROI is then monitored during the laser scanning. Vertical cracks can be detected by analyzing and comparing the temperature fluctuations from each ROI when the laser …
The WISE 2000 and 2001 Field Experiments in Support of the SMOS Mission:Sea Surface L-Band Brightness Temperature Observations and Their Application …
2004
Camps, Adriano ... et al.-- 20 pages, 16 figures, 3 tables
Synergistic use of MERIS and AATSR as a proxy for estimating Land Surface Temperature from Sentinel-3 data
2016
Land Surface Temperature (LST) is one of the key parameters in the physics of land-surface processes on regional and global scales, combining the results of all surface-atmosphere interactions and energy fluxes between the surface and the atmosphere. With the advent of the ESA's Sentinel 3 (S3) satellite, accurate LST retrieval methodologies exploiting the synergy between OLCI and SLSTR instruments can be developed. In this paper we propose a candidate methodology for retrieving LST from data acquired with the forthcoming S3 instruments. The LST algorithm is based on the Split-Window (SW) technique with an explicit dependence on surface emissivity, in contrast to the AATSR level 2 algorithm…
Comparison and Evaluation of the TES and ANEM Algorithms for Land Surface Temperature and Emissivity Separation over the Area of Valencia, Spain
2017
Land Surface temperature (LST) is a key magnitude for numerous studies, especially for climatology and assessment of energy fluxes between surface and atmosphere. Retrieval of accurate LST requires a good characterization of surface emissivity. Both quantities are coupled in a single radiance measurement; for this reason, for N spectral bands available in a remote sensor, there will always be N + 1 unknowns. To solve the indeterminacy, temperature-emissivity separation methods have been proposed, among which the Temperature Emissivity Separation (TES) algorithm is one of the most widely used. The Adjusted Normalized Emissivity Method (ANEM) was proposed as a modification of the Normalized E…
Mapping land surface emissivity from NDVI: Application to European, African, and South American areas
1996
Thermal infrared emissivity is an important parameter both for surface characterization and for atmospheric correction methods. Mapping the emissivity from satellite data is therefore a very important question to solve. The main problem is the coupling of the temperature and emissivity effects in the thermal radiances. Several methods have been developed to obtain surface emissivity from satellite data. In this way we propose a theoretical model that relates the emissivity to the NDVI (normalized difference vegetation index) of a given surface and explains the experimental behavior observed by van de Griend and Owe. We can use it to obtain the emissivity in any thermal channel, but in this …
NPP VIIRS land surface temperature product validation using worldwide observation networks.
2013
International audience; Thermal infrared satellite observations of the Earth's surface are key components in estimating the surface skin temperature over global land areas. This work presents validation methodologies to estimate the quantitative uncertainty in Land Surface Temperature (LST) product derived from the Visible Infrared Imager Radiometer Suite (VIIRS) onboard Suomi National Polar-orbiting Partnership (NPP) using ground-based measurements currently made operationally at many field and weather stations around the world. Over heterogeneous surfaces in terms of surface types or biophysical properties (e.g., vegetation density, emissivity), the validation protocol accounts for land s…
Evaluation of the S-NPP VIIRS land surface temperature product using ground data acquired by an autonomous system at a rice paddy
2018
Abstract The S-NPP VIIRS Land Surface Temperature (LST) product attained the stage V1 of validation maturity (provisional validated) at the end of 2014. This paper evaluates the current VIIRS V1 LST product versus concurrent ground data acquired at a rice paddy site from December 2014 to August 2016. The experimental site has three different seasonal and homogeneous land covers through the year, which makes the site interesting for validation activities. An autonomous and multiangular system was used to record continuous ground data at the site. The data acquired at zenith angles similar to the VIIRS viewing angles were used for the validation to avoid possible differences between satellite…
Evaluation of different methods to retrieve the hemispherical downwelling irradiance in the thermal infrared region for field measurements
2013
International audience; The thermal infrared hemispherical downwelling irradiance (HDI) emitted by the atmosphere and surrounding elements contributes through reflection to the signal measured over an observed surface by remote sensing. This irradiance must be estimated in order to obtain accurate values of land-surface temperature (LST). There are some fast methods to measure the HDI with a single measurement pointing to the sky at a specified viewing direction, but these methods require completely cloud-free or cloudy skies, and they do not account for the radiative contribution of surrounding elements. Another method is the use of a diffuse reflectance panel (usually, a rough gold-coated…
Global-Scale Evaluation of Roughness Effects on C-Band AMSR-E Observations
2015
Quantifying roughness effects on ground surface emissivity is an important step in obtaining high-quality soil moisture products from large-scale passive microwave sensors. In this study, we used a semi-empirical method to evaluate roughness effects (parameterized here by the parameter) on a global scale from AMSR-E (Advanced Microwave Scanning Radiometer for EOS) observations. AMSR-E brightness temperatures at 6.9 GHz obtained from January 2009 to September 2011, together with estimations of soil moisture from the SMOS (Soil Moisture and Ocean Salinity) L3 products and of soil temperature from ECMWF’s (European Centre for Medium-range Weather Forecasting) were used as inputs in a retrieval…
Nonlinear statistical retrieval of surface emissivity from IASI data
2017
Emissivity is one of the most important parameters to improve the determination of the troposphere properties (thermodynamic properties, aerosols and trace gases concentration) and it is essential to estimate the radiative budget. With the second generation of infrared sounders, we can estimate emissivity spectra at high spectral resolution, which gives us a global view and long-term monitoring of continental surfaces. Statistically, this is an ill-posed retrieval problem, with as many output variables as inputs. We here propose nonlinear multi-output statistical regression based on kernel methods to estimate spectral emissivity given the radiances. Kernel methods can cope with high-dimensi…