Search results for "emitting"
showing 10 items of 250 documents
ChemInform Abstract: Hybrid Organic-Inorganic Light-Emitting Diodes
2011
The demonstration of colour tunability and high efficiency has brought organic light-emitting diodes (OLEDs) into the displays and lighting market. However, high production costs due to expensive deposition techniques and the use of reactive materials still limit their market entry, highlighting the need for novel concepts. This has driven the research towards the integration of both organic and inorganic materials into devices that benefit from their respective peculiar properties. The most representative example of this tendency is the application of metal oxides in organic optoelectronics. Metal oxides combine properties such as high transparency, good electrical conductivities, tuneable…
Stable Green Electroluminescence from an Iridium Tris-Heteroleptic Ionic Complex
2012
An ionic tris-heteroleptic iridium complex gives green light-emitting electrochemical cells (LECs) with unprecedented performances for this part of the visible spectrum. The devices are very bright (>1000 cd m–2), efficient (∼3%), and stable (>55 h). The novel complex is prepared using a new and efficient synthetic procedure. We show that there is a mixed orbital formation originating from the two different orthometalating ligands resulting in photophysical properties that lie between those of its two bis-heteroleptic analogs. Therefore, tris-heteroleptic complexes provide new avenues for fine-tunning the emission properties and to bridge gaps between a series of bis-heteroleptic complexes.
Warm white LED light by frequency down-conversion of mixed yellow and red Lumogen®
2013
This work reports on the benefits and promising opportunities offered by white LED hybrid technology, based on a mixing perylene-based dyes in order to obtain a warm white light for frequency-down conversion. In a standard Ce:YAG-based white LED, the white light appears cold due to the weakness of red wavelength components in the emission spectrum. In order to obtain a warmer white, one possible solution is to add a red phosphor to the yellow one to move the chromatic coordinates properly, though the luminous efficiency drastically decreases due to the increased light absorption of the coating layer. It is generally believed that the low efficiency of warm white LEDs is the main issue today…
Mode family analysis for PMMA WGM micro resonators using spot intensity changes
2021
The whispering gallery modes (WGM) micro resonators are based on elliptical objects, which can be made from optically transparent materials, The geometry of the object enables optical wave circulating inside the ellipse using total internal reflection. If there is a monochromatic light source with constant intensity to the ellipse, constructive interference may be observed. Poly methyl methacrylate acrylic (PMMA) WGM micro resonators are commercially available with typical optical quality factor of 103-104. These could limit problems with WGM micro resonator expensive manufacturing. Thanks to advances in high resolution image processing, read-outs using spectroscopy (single photo detector) …
Chemical Bath Deposition as a Simple Way to Grow Isolated and Coalesced ZnO Nanorods for Light-Emitting Diodes Fabrication
2018
A way to grow and characterize isolated and coalesced ZnO nanorods on $p$ -GaN/sapphire structure is presented. Chemical bath deposition can be used to grow ZnO nanorods of device-quality, simply controlling the duration time of the growth process and the concentration of the nutrient solution in the bath. Increasing the duration of the process, as well as the concentration of the solution, leads to compact and sound layers instead of separated nanorods. However, too high concentrations stop the growth process. Light-emitting diodes fabricated on these ZnO-p-GaN heterostructure have a peak of electroluminescence at 400 nm and exhibit interesting electrical and optical properties. Optical po…
Design and development of a fNIRS system prototype based on SiPM detectors
2014
Functional Near Infrared Spectroscopy (fNIRS) uses near infrared sources and detectors to measure changes in absorption due to neurovascular dynamics in response to brain activation. The use of Silicon Photomultipliers (SiPMs) in a fNIRS system has been estimated potentially able to increase the spatial resolution. Dedicated SiPM sensors have been designed and fabricated by using an optimized process. Electrical and optical characterizations are presented. The design and implementation of a portable fNIRS embedded system, hosting up to 64 IR-LED sources and 128 SiPM sensors, has been carried out. The system has been based on a scalable architecture whose elementary leaf is a flexible board …
Color Conversion Light-Emitting Diodes Based on Carbon Dots: A Review
2022
This paper reviews the state-of-the-art technologies, characterizations, materials (precursors and encapsulants), and challenges concerning multicolor and white light-emitting diodes (LEDs) based on carbon dots (CDs) as color converters. Herein, CDs are exploited to achieve emission in LEDs at wavelengths longer than the pump wavelength. White LEDs are typically obtained by pumping broad band visible-emitting CDs by an UV LED, or yellow–green-emitting CDs by a blue LED. The most important methods used to produce CDs, top-down and bottom-up, are described in detail, together with the process that allows one to embed the synthetized CDs on the surface of the pumping LEDs. Experimental results…
Hybrid LEDs based on ZnO nanowire structures
2017
Abstract This paper summarized the research, development, and state of the art of hybrid ZnO nanowire LEDs, in which electroluminescence is generated at the junction between n-type doped ZnO nanowire structures and specific p-type doped polymers (in particular PEDOT, PEDOT:PSS, or PFO). Different device architectures will be reviewed and discussed with a particular emphasis on the electronic transport through the hybrid structures and the microscopic processes of light emission. Finally, a gas-phase deposition technique for conductive polymers will be presented which might help improve the performance of hybrid ZnO nanowire LEDs in the future.
The Role of Emission Layer Morphology on the Enhanced Performance of Light-Emitting Diodes Based on Quantum Dot-Semiconducting Polymer Hybrids
2016
The influence of the morphology of quantum dot (QD)-semiconducting polymer hybrid emission layers on the performance of quantum dot-based light emitting diodes (QLEDs) is systematically investigated. Chemically grafted QD-semiconducting polymer hybrids are fabricated by the ligand exchange procedure between CdSe/CdxZn1−xS QDs and a new block copolymer consisting of a carbazole-based electroactive block with a low highest occupied molecular orbital level and a disulfide-based anchor block. The performance of QLEDs with hybrid emission layers is compared with QLEDs utilizing QD-only and physically mixed QD/polymer emission layers. It is shown that only in the emission layers formed by chemica…
Combined thermal evaporated and solution processed organic light emitting diodes
2011
Abstract Highly efficient, partly solution processed phosphorescent red, green and white organic light emitting diodes with small molecular weight host materials are prepared from commercially available starting compounds. Starting from an evaporated reference device, layers are stepwise replaced by solution processed layers. Replacing the evaporated hole transport layer by a solution processed polymer interlayer does not affect the performance and allows spincoating of the emissive layer after annealing of the polymer. Devices with, next to the spincoated hole injection and transport layer, a solution processed emission layer show similar characteristics and efficiencies as the reference d…