Search results for "endocannabinoid"

showing 10 items of 179 documents

Specific Hippocampal Interneurons Shape Consolidation of Recognition Memory

2020

Summary A complex array of inhibitory interneurons tightly controls hippocampal activity, but how such diversity specifically affects memory processes is not well understood. We find that a small subclass of type 1 cannabinoid receptor (CB1R)-expressing hippocampal interneurons determines episodic-like memory consolidation by linking dopamine D1 receptor (D1R) signaling to GABAergic transmission. Mice lacking CB1Rs in D1-positive cells (D1-CB1-KO) display impairment in long-term, but not short-term, novel object recognition memory (NOR). Re-expression of CB1Rs in hippocampal D1R-positive cells rescues this NOR deficit. Learning induces an enhancement of in vivo hippocampal long-term potenti…

MaleAnimals CB1 receptor D1 receptor Dopamine Endocannabinoid system GABA Hippocampus Interneurons Long-term potentiation Male Memory Mice Novel object recognition Recognition PsychologyCB1 receptorCB1 cannabinoid receptorsD(1) receptorhippocampus[SDV]Life Sciences [q-bio]D1 receptorneuronsCB(1) receptorArticleCA1informationMiceGABAMemoryAnimalsendocannabinoid systemlong-term potentiationinterneuronsmusculoskeletal neural and ocular physiologyRecognition Psychologyepisodic memoryinhibition[SDV] Life Sciences [q-bio]modulationnervous systemdopamineLTPnovel object recognition memory
researchProduct

Therapeutic Potential of Inhibitors of Endocannabinoid Degradation for the Treatment of Stress-Related Hyperalgesia in an Animal Model of Chronic Pain

2014

The occurrence of chronic stress, depression, and anxiety can increase nociception in humans and may facilitate the transition from localized to chronic widespread pain. The mechanisms underlying chronic widespread pain are still unknown, hindering the development of effective pharmacological therapies. Here, we exposed C57BL/6J mice to chronic unpredictable stress (CUS) to investigate how persistent stress affects nociception. Next, mice were treated with multiple intramuscular nerve growth factor (NGF) injections, which induced chronic widespread nociception. Thus, combination of CUS and NGF served as a model where psychophysiological impairment coexists with long-lasting hyperalgesia. We…

MaleAnxietyPharmacologyAmidohydrolaseschemistry.chemical_compoundPiperidinesFatty acid amide hydrolaseNerve Growth FactorAnimalsMedicineChronic stressBenzodioxolesEnzyme InhibitorsJZL184PharmacologyDepressionbusiness.industryUncertaintyChronic painBrainAnalgesics Non-NarcoticURB597medicine.diseaseEndocannabinoid systemMonoacylglycerol LipasesMice Inbred C57BLDisease Models AnimalPsychiatry and Mental healthNociceptionchemistryHyperalgesiaAnesthesiaBenzamidesHyperalgesiaOriginal ArticleCarbamatesChronic Painmedicine.symptombusinessStress PsychologicalEndocannabinoidsNeuropsychopharmacology
researchProduct

Involvement of CB1 and CB2 receptors in the modulation of cholinergic neurotransmission in mouse gastric preparations.

2007

Abstract While most of the studies concerning the role of cannabinoids on gastric motility have focused the attention on the gastric emptying in in vivo animal models, there is little information about the cannabinoid peripheral influence in the stomach. In addition, the functional features of CB2 receptors in the gastrointestinal tract have been poorly characterized. The purpose of the present study was to investigate the effects of cannabinoid drugs on the excitatory cholinergic and inhibitory non-adrenergic non-cholinergic (NANC) neurotransmission in mouse isolated gastric preparations. Intraluminal pressure from isolated whole stomach was recorded and mechanical responses induced by ele…

MaleCB1 receptorCannabinoid receptorIndolesmedicine.medical_treatmentGastric motilityReceptors PresynapticSettore BIO/09 - FisiologiaSynaptic TransmissionReceptor Cannabinoid CB2MicePiperidinesReceptor Cannabinoid CB1Cannabinoid receptor type 2StomachCholinergic Fiberslipids (amino acids peptides and proteins)Rimonabantmedicine.drugAgonistmedicine.medical_specialtyCarbacholmedicine.drug_classPolyunsaturated AlkamidesMorpholinesNeuromuscular JunctionArachidonic AcidsBiologyIn Vitro TechniquesNaphthalenesInternal medicineCannabinoid Receptor ModulatorsmedicineAnimalsCannabinoidPharmacologyEnteric neurotransmissionGastric emptyingCannabinoidsExcitatory Postsynaptic PotentialsCB2 receptorElectric StimulationBenzoxazinesMice Inbred C57BLEndocrinologyInhibitory Postsynaptic PotentialsCholinergicPyrazolesCannabinoidGastrointestinal MotilityGastric motilityEndocannabinoidsPharmacological research
researchProduct

Enhanced Functional Activity of the Cannabinoid Type-1 Receptor Mediates Adolescent Behavior.

2015

Adolescence is characterized by drastic behavioral adaptations and comprises a particularly vulnerable period for the emergence of various psychiatric disorders. Growing evidence reveals that the pathophysiology of these disorders might derive from aberrations of normal neurodevelopmental changes in the adolescent brain. Understanding the molecular underpinnings of adolescent behavior is therefore critical for understanding the origin of psychopathology, but the molecular mechanisms that trigger adolescent behavior are unknown. Here, we hypothesize that the cannabinoid type-1 receptor (CB1R) may play a critical role in mediating adolescent behavior because enhanced endocannabinoid (eCB) sig…

MaleCannabinoid receptorAdolescentmedicine.medical_treatmentIn Vitro TechniquesImpulsivityMediatorRisk-TakingCocaineReceptor Cannabinoid CB1Sulfur IsotopesmedicineAnimalsHumansMaze LearningRadionuclide ImagingSocial BehaviorCannabinoid Receptor AntagonistsBehavior AnimalGeneral NeuroscienceNovelty seekingAge FactorsBrainArticlesPhenotypeEndocannabinoid systemCorpus StriatumRats Inbred F344RatsAdolescent BehaviorGuanosine 5'-O-(3-Thiotriphosphate)Models AnimalMutationExploratory BehaviorCannabinoid receptor antagonistCannabinoidmedicine.symptomRats TransgenicPsychologyNeuroscienceEndocannabinoidsThe Journal of neuroscience : the official journal of the Society for Neuroscience
researchProduct

Protective activation of the endocannabinoid system during ischemia in dopamine neurons

2006

Endocannabinoids act as neuroprotective molecules promptly released in response to pathological stimuli. Hence, they may represent one component of protection and/or repair mechanisms mobilized by dopamine (DA) neurons under ischemia. Here, we show that the endocannabinoid 2-arachidonoyl-glycerol (2-AG) plays a key role in protecting DA neurons from ischemia-induced altered spontaneous activity both in vitro and in vivo. Accordingly, neuroprotection can be elicited through moderate cannabinoid receptor type-1 (CB1) activation. Conversely, blockade of endocannabinoid actions through CB1 receptor antagonism worsens the outcome of transient ischemia on DA neuronal activity. These findings indi…

MaleCannabinoid receptorDopaminePharmacologyBrain IschemiaMidbrainRats Sprague-DawleyMicePiperidinesReceptor Cannabinoid CB1IschemiaPremovement neuronal activityReceptorMice KnockoutNeuronsmusculoskeletal neural and ocular physiologyEndocannabinoid systemCB1NeuroprotectionElectrophysiologyNeurologylipids (amino acids peptides and proteins)Rimonabantpsychological phenomena and processesmedicine.drugSignal TransductionMorpholinesIschemiaArachidonic AcidsBiologyIn Vitro TechniquesNaphthalenesNeuroprotectionAmidohydrolasesGlycerideslcsh:RC321-571DopamineCannabinoid Receptor ModulatorsmedicineAnimalslcsh:Neurosciences. Biological psychiatry. NeuropsychiatryEndocannabinoidVentral Tegmental Areamedicine.diseaseBlockadeBenzoxazinesRatsnervous systemPyrazolesNeuroscienceEndocannabinoidsNeurobiology of Disease
researchProduct

Endocannabinoids render exploratory behaviour largely independent of the test aversiveness: role of glutamatergic transmission.

2009

To investigate the impact of averseness, controllability and familiarity of a test situation on the involvement of the endocannabinoid system in the regulation of exploratory behaviour, we tested conventional and conditional cannabinoid receptor type 1 (CB1)-deficient mice in behavioural paradigms with different emotional load, which depended on the strength of illumination and the ability of the animals to avoid the light stimulus. Complete CB1 null-mutant mice (Total-CB1-KO) showed an anxiogenic-like phenotype under circumstances where they were able to avoid the bright light such as the elevated plus-maze and the light/dark avoidance task. Conditional mutant mice lacking CB1 expression s…

MaleCannabinoid receptorGlutamic AcidStimulus (physiology)Neuropsychological TestsSynaptic TransmissionOpen fieldDevelopmental psychologyBehavioral NeuroscienceGlutamatergicMiceReceptor Cannabinoid CB1PhotophobiaCannabinoid receptor type 1Cannabinoid Receptor ModulatorsGeneticsAvoidance LearningAnimalsHabituationMaze LearningBrain ChemistryCerebral CortexMice KnockoutThigmotaxisBehavior AnimalFearEndocannabinoid systemMice Inbred C57BLPhenotypenervous systemNeurologyExploratory Behaviorlipids (amino acids peptides and proteins)PsychologyNeurosciencepsychological phenomena and processesEndocannabinoidsGenes, brain, and behavior
researchProduct

Reduced anxiety-like behaviour induced by genetic and pharmacological inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (…

2007

Anandamide and 2-arachidonoyl glycerol, referred to as endocannabinoids (eCBs), are the endogenous agonists for the cannabinoid receptor type 1 (CB1). Several pieces of evidence support a role for eCBs in the attenuation of anxiety-related behaviours, although the precise mechanism has remained uncertain. The fatty acid amid hydrolase (FAAH), an enzyme responsible for the degradation of eCBs, has emerged as a promising target for anxiety-related disorders, since FAAH inhibitors are able to increase the levels of anandamide and thereby induce anxiolytic-like effects in rodents. The present study adopted both genetic and pharmacological approaches and tested the hypothesis that FAAH-deficient…

MaleCannabinoid receptorPolyunsaturated Alkamidesmedicine.medical_treatmentArachidonic AcidsAnxietyPharmacologyAmidohydrolasesGlyceridesMiceCellular and Molecular Neurosciencechemistry.chemical_compoundPiperidinesReceptor Cannabinoid CB1RimonabantFatty acid amide hydrolaseCannabinoid receptor type 1medicineAnimalsMaze LearningMice KnockoutPharmacologyAnalysis of VarianceBehavior AnimalAnandamideURB597Endocannabinoid systemMice Inbred C57BLDisease Models Animalnervous systemchemistryBenzamidesPyrazoleslipids (amino acids peptides and proteins)CarbamatesCannabinoidRimonabantpsychological phenomena and processesEndocannabinoidsmedicine.drugNeuropharmacology
researchProduct

Genetic dissection of the role of cannabinoid type-1 receptors in the emotional consequences of repeated social stress in mice.

2012

International audience; The endocannabinoid system (ECS) tightly controls emotional responses to acute aversive stimuli. Repeated stress alters ECS activity but the role played by the ECS in the emotional consequences of repeated stress has not been investigated in detail. This study used social defeat stress, together with pharmacology and genetics to examine the role of cannabinoid type-1 (CB(1)) receptors on repeated stress-induced emotional alterations. Seven daily social defeat sessions increased water (but not food) intake, sucrose preference, anxiety, cued fear expression, and adrenal weight in C57BL/6N mice. The first and the last social stress sessions triggered immediate brain reg…

MaleCannabinoid receptorPolyunsaturated Alkamidesmedicine.medical_treatmentPopulationEmotionsDrinkingArachidonic AcidsMotor ActivitySerotonergicGlyceridesSocial defeat03 medical and health sciencesEatingFood PreferencesMice0302 clinical medicinePiperidinesReceptor Cannabinoid CB1Adrenal GlandsmedicineAnimals[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]education030304 developmental biologyPharmacologySocial stressMice KnockoutNeurons0303 health scienceseducation.field_of_studyBrainImmobility Response TonicExtinction (psychology)Endocannabinoid systemMice Inbred C57BLPsychiatry and Mental healthnervous systemPyrazoles[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]lipids (amino acids peptides and proteins)Original ArticleCannabinoidRimonabantPsychologyNeuroscience030217 neurology & neurosurgeryStress PsychologicalEndocannabinoidsNeuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
researchProduct

A restricted population of CB1 cannabinoid receptors with neuroprotective activity.

2014

The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. Of note, CB1 receptors are expressed at the synapses of two opposing (i.e., GABAergic/inhibitory and glutamatergic/excitatory) neuronal populations, so the activation of one and/or another receptor population may conceivably evoke different effects. Despite the widely reported neuroprotective activity of the CB1 receptor in animal models, the precise pathophysiological relevance of those two CB1 receptor pools in neurodegenerative processes is unknown. Here, we first induced excitotoxic damage in the mouse brain b…

MaleCannabinoid receptorPopulationNeurotoxinsExcitotoxicityGlutamic AcidBiologymedicine.disease_causeNeuroprotectionGlutamatergicMiceOrgan Culture TechniquesReceptor Cannabinoid CB1medicineAnimalsHumansGABAergic NeuronsReceptoreducationCaenorhabditis elegans ProteinsAgedCerebral CortexMice KnockoutNeuronseducation.field_of_studyMultidisciplinaryIntegrasesmusculoskeletal neural and ocular physiologyNeurodegenerative DiseasesBiological SciencesMiddle AgedReceptors GABA-AEndocannabinoid systemCorpus Striatumnervous systemGABAergiclipids (amino acids peptides and proteins)FemaleNeurosciencepsychological phenomena and processesEndocannabinoidsSynaptosomesProceedings of the National Academy of Sciences of the United States of America
researchProduct

CB1 Cannabinoid Receptors and On-Demand Defense Against Excitotoxicity

2003

Abnormally high spiking activity can damage neurons. Signaling systems to protect neurons from the consequences of abnormal discharge activity have been postulated. We generated conditional mutant mice that lack expression of the cannabinoid receptor type 1 in principal forebrain neurons but not in adjacent inhibitory interneurons. In mutant mice,the excitotoxin kainic acid (KA) induced excessive seizures in vivo. The threshold to KA-induced neuronal excitation in vitro was severely reduced in hippocampal pyramidal neurons of mutants. KA administration rapidly raised hippocampal levels of anandamide and induced protective mechanisms in wild-type principal hippocampal neurons. These protecti…

MaleCannabinoid receptorReceptors Drugmedicine.medical_treatment2-ArachidonoylglycerolExcitotoxicityHippocampal formationmedicine.disease_causeHippocampusMicechemistry.chemical_compoundPiperidinesCannabinoid receptor type 1Excitatory Amino Acid AgonistsReceptors Cannabinoidgamma-Aminobutyric AcidMice KnockoutNeuronsKainic AcidMultidisciplinaryBrainEndocannabinoid systemNeuroprotective AgentsMitogen-Activated Protein KinasesRimonabantSignal Transductionmedicine.medical_specialtyKainic acidPolyunsaturated AlkamidesGlutamic AcidMice TransgenicArachidonic AcidsIn Vitro TechniquesBiologyGlyceridesProsencephalonInternal medicinemedicineAnimalsFuransGenes Immediate-EarlyEpilepsyCannabinoidsBrain-Derived Neurotrophic FactorExcitatory Postsynaptic PotentialsMice Inbred C57BLEndocrinologyGene Expression Regulationnervous systemchemistryMutationPyrazolesCannabinoidNeuroscienceEndocannabinoidsScience
researchProduct