Search results for "endosome"

showing 10 items of 104 documents

ABP1 Mediates Auxin Inhibition of Clathrin-Dependent Endocytosis in Arabidopsis

2010

SummarySpatial distribution of the plant hormone auxin regulates multiple aspects of plant development. These self-regulating auxin gradients are established by the action of PIN auxin transporters, whose activity is regulated by their constitutive cycling between the plasma membrane and endosomes. Here, we show that auxin signaling by the auxin receptor AUXIN-BINDING PROTEIN 1 (ABP1) inhibits the clathrin-mediated internalization of PIN proteins. ABP1 acts as a positive factor in clathrin recruitment to the plasma membrane, thereby promoting endocytosis. Auxin binding to ABP1 interferes with this action and leads to the inhibition of clathrin-mediated endocytosis. Our study demonstrates th…

0106 biological sciencesEndosomemedia_common.quotation_subjectArabidopsisReceptors Cell SurfaceEndocytosis01 natural sciencesClathrinGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesAuxinheterocyclic compoundsPIN proteinsInternalization030304 developmental biologymedia_commonPlant Proteinschemistry.chemical_classificationAuxin binding0303 health sciencesbiologyIndoleacetic AcidsBiochemistry Genetics and Molecular Biology(all)Arabidopsis ProteinsCell MembranefungiMembrane Transport Proteinsfood and beveragesReceptor-mediated endocytosisClathrinEndocytosisCell biologychemistrybiology.protein010606 plant biology & botanyCell
researchProduct

Echovirus 1 internalization negatively regulates epidermal growth factor receptor downregulation

2016

We have demonstrated previously that the human picornavirus Echovirus 1 (EV1) triggers an infectious internalization pathway that follows closely, but seems to stay separate, from the epidermal growth factor receptor (EGFR) pathway triggered by epidermal growth factor (EGF). Here, we confirmed by using live and confocal microscopy that EGFR and EV1 vesicles are following intimately each other but are distinct entities with different degradation kinetics. We show here that despite being sorted to different pathways and located in distinct endosomes, EV1 inhibits EGFR downregulation. Simultaneous treatment with EV1 and EGF led to an accumulation of EGFR in cytoplasmic endosomes, which was evi…

0301 basic medicine030102 biochemistry & molecular biologybiologyEndosomemedia_common.quotation_subjectImmunologyMicrobiologyClathrinCell biology03 medical and health sciences030104 developmental biologyDownregulation and upregulationEpidermal growth factorVirologybiology.proteinEpidermal growth factor receptorInternalizationA431 cellsProtein kinase Cmedia_commonCellular Microbiology
researchProduct

Exosomes derived from stimulated monocytes promote endothelial dysfunction and inflammation in vitro

2017

During the last few years, the scientific community interest on the role of extracellular vesicles (EVs) in physiology and pathophysiology of several human diseases has increased exponentially (1). These vesicles present the capability of transferring different kind of molecules (lipids, RNAs, DNA, protein…) between cells and may exert some effects on the cell phenotype. The content of these vesicles can vary depending on the cell type of origin (2). Although nowadays there is no consensus regarding the appropriate nomenclature, three well-known types of vesicles can be categorized on the basis of size and biogenesis: apoptotic bodies (>1 µm), microvesicles (150 nm–1 µm, budding from plasma…

0301 basic medicineCell typeBiología celularEndosomeVesicleInflammationGeneral MedicineBiologyExosomeIn vitroMicrovesiclesAparato circulatorioCell biology03 medical and health sciences030104 developmental biologyCitologíamedicinemedicine.symptomBiogenesisSistema cardiovascular
researchProduct

Rabphilin involvement in filtration and molecular uptake in Drosophila nephrocytes suggests a similar role in human podocytes

2020

ABSTRACT Drosophila nephrocytes share functional, structural and molecular similarities with human podocytes. It is known that podocytes express the rabphilin 3A (RPH3A)-RAB3A complex, and its expression is altered in mouse and human proteinuric disease. Furthermore, we previously identified a polymorphism that suggested a role for RPH3A protein in the development of urinary albumin excretion. As endocytosis and vesicle trafficking are fundamental pathways for nephrocytes, the objective of this study was to assess the role of the RPH3A orthologue in Drosophila, Rabphilin (Rph), in the structure and function of nephrocytes. We confirmed that Rph is required for the correct function of the en…

0301 basic medicineEndocytic cycle030232 urology & nephrologyRetinoic acidlcsh:MedicineMedicine (miscellaneous)Labyrinthine channelschemistry.chemical_compound0302 clinical medicineImmunology and Microbiology (miscellaneous)Chronic kidney diseaseDrosophila ProteinsSlit diaphragmGene knockdownPodocytesIntracellular Signaling Peptides and ProteinsDrosophila nephrocyteEndocytosisCell biologyProtein TransportDrosophila melanogasterLarvaSlit diaphragmFemaleRNA InterferenceEndocytic pathwaylcsh:RB1-214Research ArticleEndosomeNeuroscience (miscellaneous)Nerve Tissue ProteinsTretinoinCell fate determinationBiologyEndocytosisGeneral Biochemistry Genetics and Molecular Biology03 medical and health scienceslcsh:PathologyRabphilinAnimalsHumansCell Lineagelcsh:RCytoplasmic VesiclesDrosCubilinSurvival Analysis030104 developmental biologychemistrySilver NitrateDisease Models & Mechanisms
researchProduct

Nano-engineered skin mesenchymal stem cells: potential vehicles for tumour-targeted quantum-dot delivery

2017

Nanotechnology-based drug design offers new possibilities for the use of nanoparticles in imaging and targeted therapy of tumours. Due to their tumour-homing ability, nano-engineered mesenchymal stem cells (MSCs) could be utilized as vectors to deliver diagnostic and therapeutic nanoparticles into a tumour. In the present study, uptake and functional effects of carboxyl-coated quantum dots QD655 were studied in human skin MSCs. The effect of QD on MSCs was examined using a cell viability assay, Ki67 expression analysis, and tri-lineage differentiation assay. The optimal conditions for QD uptake in MSCs were determined using flow cytometry. The QD uptake route in MSCs was examined via fluore…

0301 basic medicineEndosomeGeneral Physics and Astronomyquantum dots02 engineering and technologylcsh:Chemical technologyEndocytosislcsh:TechnologyFull Research PaperFlow cytometry03 medical and health sciencesmedicineNanotechnologyendocytosislcsh:TP1-1185General Materials ScienceCD90stem cell differentiationViability assayMicropinocytosisElectrical and Electronic Engineeringlcsh:Sciencemesenchymal stem cellsmedicine.diagnostic_testlcsh:TChemistryMesenchymal stem cell021001 nanoscience & nanotechnologylcsh:QC1-999Cell biologyNanoscience030104 developmental biologyTargeted drug deliverylcsh:Q0210 nano-technologylcsh:PhysicsBeilstein Journal of Nanotechnology
researchProduct

Transient Multivalent Nanobody Targeting to CD206-Expressing Cells via PH-Degradable Nanogels

2020

To target nanomedicines to specific cells, especially of the immune system, nanobodies can be considered as an attractive tool, as they lack the Fc part as compared to traditional antibodies and, thus, prevent unfavorable Fc-receptor mediated mistargeting. For that purpose, we have site-specifically conjugated CD206/MMR-targeting nanobodies to three types of dye-labeled nanogel derivatives: non-degradable nanogels, acid-degradable nanogels (with ketal crosslinks), and single polymer chains (also obtained after nanogel degradation). All of them can be obtained from the same reactive ester precursor block copolymer. After incubation with na&iuml

0301 basic medicineEndosomeNanogels02 engineering and technologyConjugated systemArticleM2 macrophage03 medical and health sciencesHumansReversible addition−fragmentation chain-transfer polymerizationlcsh:QH301-705.5targetingchemistry.chemical_classificationRAFT polymerizationChinese hamster ovary cellGeneral MedicinePolymerHydrogen-Ion Concentrationmultivalency021001 nanoscience & nanotechnologynanobody030104 developmental biologyTAMchemistryCD206lcsh:Biology (General)nanogelclick chemistryClick chemistryBiophysicsNanocarriers0210 nano-technologyNanogelCells
researchProduct

Exosomes in cancer theranostic: Diamonds in the rough

2017

IF 3.306; International audience; During the last 10 years, exosomes, which are small vesicles of 50-200 nm diameter of endosomal origin, have aroused a great interest in the scientific and clinical community for their roles in intercellular communication in almost all physiological and pathological processes. Most cells can potentially release these nanovesicles that share with the parent cell a similar lipid bilayer with transmembrane proteins and a panel of enclosed soluble proteins such as heat shock proteins and genetic material, thus acting as potential nanoshuttles of biomarkers. Exosomes surface proteins allow their targeting and capture by recipient cells, while the exosomes' conte…

0301 basic medicineEndosomeReviewexosomes[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologyModels BiologicalTheranostic NanomedicineMetastasis03 medical and health sciencesCellular and Molecular NeuroscienceDrug Delivery SystemsNeoplasmsHeat shock proteincancer diagnosisBiomarkers TumormedicineAnimalsHumansTumor microenvironment[ SDV.BC ] Life Sciences [q-bio]/Cellular BiologyCancerCell Biologymedicine.diseasePrimary tumorMicrovesicles3. Good healthCell biology030104 developmental biologyTumor progressionheat shock proteinscancer therapy
researchProduct

An Assay to Determine Mechanisms of Rapid Autoantibody-Induced Neurotransmitter Receptor Endocytosis and Vesicular Trafficking in Autoimmune Encephal…

2019

N-Methyl-D-aspartate (NMDA) receptors (NMDARs) are among the most important excitatory neurotransmitter receptors in the human brain. Autoantibodies to the human NMDAR cause the most frequent form of autoimmune encephalitis involving autoantibody-mediated receptor cross-linking and subsequent internalization of the antibody-receptor complex. This has been deemed to represent the predominant antibody effector mechanism depleting the NMDAR from the synaptic and extra-synaptic neuronal cell membrane. To assess in detail the molecular mechanisms of autoantibody-induced NMDAR endocytosis, vesicular trafficking, and exocytosis we transiently co-expressed rat GluN1-1a-EGFP and GluN2B-ECFP alone or…

0301 basic medicineEndosomeautoantibodiesmedia_common.quotation_subjectN-Methyl-D-aspartate receptorsEndocytosisExocytosislcsh:RC346-42903 medical and health sciences0302 clinical medicineNeurotransmitter receptorendocytosisInternalizationReceptorlcsh:Neurology. Diseases of the nervous systemmedia_commonOriginal ResearchChemistryAutoantibodyautoimmune encephalitisCell biology030104 developmental biologynervous systemNeurologyRabNeurology (clinical)exocytosisvesicular trafficking030217 neurology & neurosurgerycross-linkingFrontiers in neurology
researchProduct

Hepatitis B Virus Exploits ERGIC-53 in Conjunction with COPII to Exit Cells.

2020

Several decades after its discovery, the hepatitis B virus (HBV) still displays one of the most successful pathogens in human populations worldwide. The identification and characterization of interactions between cellular and pathogenic components are essential for the development of antiviral treatments. Due to its small-sized genome, HBV highly depends on cellular functions to produce and export progeny particles. Deploying biochemical-silencing methods and molecular interaction studies in HBV-expressing liver cells, we herein identified the cellular ERGIC-53, a high-mannose-specific lectin, and distinct components of the endoplasmic reticulum (ER) export machinery COPII as crucial factor…

0301 basic medicineHepatitis B virusSec24AEndosomeHBV assemblyVesicular Transport ProteinsN-glycosylationBiologymedicine.disease_causeEndoplasmic ReticulumTransfectionGenomeESCRTArticle03 medical and health sciencesN-linked glycosylationViral life cycleCell Line TumormedicineHBVHumansCOPIICOPIIlcsh:QH301-705.5Hepatitis B virus030102 biochemistry & molecular biologyEndosomal Sorting Complexes Required for TransportEndoplasmic reticulumVirionMembrane ProteinsGeneral MedicineHepatitis BHBV egressERGIC-53Cell biologyProtein Transport030104 developmental biologyMannose-Binding Lectinslcsh:Biology (General)HepatocytesLMAN-1COP-Coated VesiclesCells
researchProduct

ESCRT Requirements for Murine Leukemia Virus Release

2016

The Murine Leukemia Virus (MLV) is a gammaretrovirus that hijack host components of the endosomal sorting complex required for transport (ESCRT) for budding. To determine the minimal requirements for ESCRT factors in MLV viral and viral-like particles (VLP) release, an siRNA knockdown screen of ESCRT(-associated) proteins was performed in MLV-producing human cells. We found that MLV VLPs and virions primarily engage the ESCRT-I factor Tsg101 and marginally the ESCRT-associated adaptors Nedd4-1 and Alix to enter the ESCRT pathway. Conversely, the inactivation of ESCRT-II had no impact on VLP and virion egress. By analyzing the effects of individual ESCRT-III knockdowns, VLP and virion releas…

0301 basic medicineMLV; VLPs; retroviral budding; viral late domain; ESCRT; MVB pathway; CHMP1AEndosomevirusesGenetic Vectorslcsh:QR1-502CHMP1AGene ExpressionGene Products gagMLVmacromolecular substanceslcsh:MicrobiologyArticleESCRTCell LineESCRTMice03 medical and health sciencesviral late domainMVB pathwayVirologyGene OrderMurine leukemia virusAnimalsHumansVLPsTSG101Viral sheddingVirus Releaseretroviral buddingGammaretrovirusBuddingEndosomal Sorting Complexes Required for Transportbiologybiochemical phenomena metabolism and nutritionbiology.organism_classificationVirologyVirus ReleaseLeukemia Virus Murine030104 developmental biologyInfectious DiseasesGene Knockdown TechniquesRetroviridae InfectionsViruses
researchProduct