Search results for "engineering"
showing 10 items of 44231 documents
PD characteristics at Square Shaped Voltages Applying Two Different Detecting Techniques
2016
Nowadays power electronic converters are widely used and the fast switching voltage fronts results in an increased stress on the insulation material and may cause a reduction of the HV systems reliability. Nonsinusoidal voltage waveform have influence on the partial discharges (PD) characteristics in insulating systems due to the increased harmonic content which causes problems mainly in electrical PD measurement setups. In fact, impulse voltages cause strong switching disturbances, which make it much more difficult to distinguish PD signals from noise. This work investigates the influence of repetitive steep pulses on different types of test objects exposed to square wave voltages applying…
Partial discharges at different voltage waveshapes: Comparison between two different acquisition systems
2018
In modern HV apparatuses the wide use of electronic converters, increase the stress on the involved insulation systems and thus affect the reliability of the whole power grid. Additionally, such non-sinusoidal voltage shapes contain high gradient flanks that create problems in the detection of partial discharge (PD) activity. The aim of this paper is to discuss the methodology on how to suitably approach PD detection in insulation systems exposed to various voltage waveshapes in general by comparing two different measuring systems. The first one, equipped with a resonant PD decoupler, designed specifically for detection at typical power electronic waveshapes and the other one, based on an a…
High-frequency electrodeless lamps in argon–mercury mixtures
2005
In this paper, numerical and experimental investigations of high-frequency (HF) electrodeless lamps in argon–mercury mixtures are performed. The intensities of the mercury spectral lines having wavelengths λ = 404.66, 435.83, 546.07 nm (7 3S1–6 3P0,1,2) and the resonance line λ = 253.7 nm (6 3 P1–6 1S0) are measured at a wide range of mercury pressures, varying the HF generator current and argon filling pressure. A stationary self-consistent model of HF electrodeless discharge lamp is developed including kinetics of the excited mercury and argon atomic states. Based on the developed model, the radiation characteristics of the discharge plasma are calculated. Numerical simulation of the line…
IEEE Magnetics Society Distinguished Lecturers for 2020
2019
With information technology consuming a sizeable part of the total energy, “Green IT” information storage and computing technology will have a major impact on addressing societal challenges.
Evolution of application-specific cache mappings
2020
Reconfigurable caches offer an intriguing opportunity to tailor cache behavior to applications for better run-times and energy consumptions. While one may adapt structural cache parameters such as cache and block sizes, we adapt the memory-address-to-cache-index mapping function to the needs of an application. Using a LEON3 embedded multi-core processor with reconfigurable cache mappings, a metaheuristic search procedure, and MiBench applications, we show in this work how to accurately compare non-deterministic performances of applications and how to use this information to implement an optimization procedure that evolves application-specific cache mappings for the LEON3 multi-core processo…
Multi-application Based Fault-Tolerant Network-on-Chip Design for Mesh Topology Using Reconfigurable Architecture
2019
In this paper, we propose a two-step fault-tolerant approach to address the faults occurred in cores. In the first stage, a Particle Swarm Optimization (PSO) based approach has been proposed for the fault-tolerant mapping of multiple applications on to the mesh based reconfigurable architecture by introducing spare cores and a heuristic has been proposed for the reconfiguration in the second stage. The proposed approach has been experimented by taking several benchmark applications into consideration. Communication cost comparisons have been carried out by taking the failed cores as user input and the experimental results show that our approach could get improvements in terms of communicati…
Production of Nano-Sized Co<sub>3</sub>O<sub>4</sub> by Pyrolysis of Organic Extracts
2016
The most promising application field of materials based on nano-sized Co3O4 is catalysis. The method of production is one of the factors, which greatly affects the catalytic activity of Co3O4 catalysts. The aim of this research is to study possibilities of a new promising extractive-pyrolytic method (EPM) for the production of Co3O4 nanopowders and silica- and ceria-supported Co3O4 nanocomposites. Solutions of cobalt hexanoate in hexanoic acid and trioctylammonium tetrachlorocobaltate in toluene preliminary produced by solvent extraction were used as precursors. The precursors’ thermal stability, phase composition, morphology and the magnetic properties of the final products of pyrolysis we…
Luminescence of F2 and F3 + centres in LiF crystals irradiated with 12 MeV 12C ions
2018
Dependences of the nanohardness and photoluminescence of F 2 and F 3 + centers on the depth in LiF crystals irradiated with 12 MeV 12 C ions to fluences 10 10 -10 15 ions/cm 2 were studied using laser scanning confocal microscopy, luminescent spectroscopy, and the nanoindentation method. The nanohardness measurements showed a significant hardening effect at the end of the ion run with the dominant contribution of defects formed by the mechanism of elastic collisions. The observed attenuation of the luminescence intensity at high fluences is associated with the intense nucleation of dislocations as traps for aggregate color centers.
Pressure-induced insulator-to-metal transition in α-SnWO4
2016
In-situ high-pressure W L1 and L3 edges x-ray absorption and mid-infrared spectroscopies complemented by first-principles calculations suggest the existence of pressure- induced insulator-to-metal transition in α-SnWO4 in the range of 5-7 GPa. Its origin is explained by a symmetrization of metal-oxygen octahedra due to a strong interaction of Sn 5s, W 5d and O 2p states along the b-axis direction, leading to a collapse of the band gap.
Recent improvements on micro-thermocouple based SThM
2017
The scanning thermal microscope (SThM) has become a versatile tool for local surface temperature mapping or measuring thermal properties of solid materials. In this article, we present recent improvements in a SThM system, based on a micro-wire thermocouple probe associated with a quartz tuning fork for contact strength detection. Some results obtained on an electrothermal micro-hotplate device, operated in active and passive modes, allow demonstrating its performance as a coupled force detection and thermal measurement system.