Search results for "engineering"

showing 10 items of 44231 documents

Neutron diffraction study of microstructural and magnetic effects in fine particle NiO powders

2016

Nickel oxide powders with grain sizes ranging from 100 to 1500 nm have been studied by high-resolution neutron diffraction. We have found that the atomic structure, the antiferromagnetic ordering, and the value of the nickel magnetic moments inherent in the bulk material of NiO are still preserved and are nearly independent of the average size of the grains. The sizes of the coherently scattering atomic and magnetic domains were estimated independently owing to a complete separation of the nuclear and magnetic peaks in the neutron diffraction patterns. It is shown that the finite-size and surface disorder effects in particles at the submicron scale have a more pronounced influence on the ma…

010302 applied physicsMaterials scienceMagnetic structureMagnetic domainMagnetic momentCondensed matter physicsScatteringMagnetismNickel oxideNeutron diffraction02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsCrystallography0103 physical sciencesParticle0210 nano-technologyphysica status solidi (b)
researchProduct

Tandem laser-gas metal arc welding joining of 20 mm thick super duplex stainless steel: An experimental and numerical study

2020

The present work covers the topic of strains and stresses prediction in case of welded steel structures. Steel sheets of 20 mm thickness made in UR™2507Cu are welded using a laser and gas metal arc welding processes combination. The focused laser beam leads the arc in a Y-shape chamfer geometry. Both sources are 20 mm apart from each other in order to avoid any synergic effect with each other. In order to predict residual strain, a 3D unsteady numerical simulation has been developed in COMSOL finite element software. A volume heat source has been identified based on the temperature measurements made by 10 K-type thermocouples, implanted inside the workpiece. The 50 mm deep holes are drille…

010302 applied physicsMaterials scienceMaterials processingTandemMechanical EngineeringSteel structures02 engineering and technologyWelding021001 nanoscience & nanotechnologyLaser01 natural sciencesFinite element methodGas metal arc weldinglaw.inventionlaw0103 physical sciencesGeneral Materials ScienceComposite material0210 nano-technologyProceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
researchProduct

FTIR Analysis of Electron Irradiated Single and Multilayer Si<sub>3</sub>N<sub>4</sub> Coatings

2018

Silicon nitride (Si3N4) due to its good mechanical and electrical properties is a promising material for wide range of applications, including exploitation under action of ionizing radiation. For estimating the changes of chemical bonds in silicon nitride nanolayers under action of ionizing radiation single and multi-layer silicon nitride nanolayered coatings on prepared Si subtrate were investigated by means of Fourier transform infrared spectrometry. Three main groups of signals were identified in both types of nanolayers, at 510 and 820 cm-1 and group of broad signals at 1000-1200 cm-1. Irradiation with accelerated electrons up to absorbed doses 36 MGy causes minor changes of signal inte…

010302 applied physicsMaterials scienceMechanical Engineering02 engineering and technologyElectron021001 nanoscience & nanotechnology01 natural sciencesMechanics of Materials0103 physical sciencesGeneral Materials ScienceIrradiationFourier transform infrared spectroscopy0210 nano-technologyNuclear chemistryKey Engineering Materials
researchProduct

Electrical and thermomechanical properties of CVI- Si3N4 porous rice husk ash infiltrated by Al-Mg-Si alloys

2017

Abstract The effect of following processing parameters on the electrical and thermomechanical properties of Al/Si3N4 deposited silica composites was investigated using the Taguchi method and analysis of variance (ANOVA): infiltration temperature and time, atmosphere, effect of Si3N4 coating, porosity content in the preforms, and magnesium content in the alloy. The contributions of each of the parameters to modulus of elasticity, electrical resistivity, coefficient of thermal expansion (CTE), and thermal diffusivity of the resulting composites were determined. The maximum modulus of elasticity and electrical resistivity of obtained composites were 265 GPa, and 1.37 × 10−3 Ω m, respectively. …

010302 applied physicsMaterials scienceMechanical EngineeringAlloyMetals and AlloysYoung's modulus02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyThermal diffusivity01 natural sciencesThermal expansionsymbols.namesakeTaguchi methodsCoatingMechanics of MaterialsElectrical resistivity and conductivity0103 physical sciencesMaterials ChemistryengineeringsymbolsComposite material0210 nano-technologyPorosityJournal of Alloys and Compounds
researchProduct

Co-Deposition and Characterization of Hydroxyapatite-Chitosan and Hydroxyapatite-Polyvinylacetate Coatings on 304 SS for Biomedical Devices

2019

During the last decades, biomaterials have been deeply studied to perform and improve coatings for biomedical devices. Metallic materials, especially in the orthopedic field, represent the most common material used for different type of devices thanks to their good mechanical properties. Nevertheless, low/medium resistance to corrosion and low osteointegration ability characterizes these materials. To overcome these problems, the use of biocoatings on metals substrate is largely diffused. In fact, biocoatings have a key role to confer biocompatibility properties, to inhibit corrosion and thus improve the lifetime of implanted devices. In this work, the attention was focused on Hydroxyapatit…

010302 applied physicsMaterials scienceMechanical EngineeringCo deposition02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCharacterization (materials science)Chitosanchemistry.chemical_compoundchemistryChemical engineeringMechanics of Materials0103 physical sciencesGeneral Materials Science0210 nano-technologyKey Engineering Materials
researchProduct

A Computational Study on Crack Propagation in Bio-Inspired Lattices

2018

A computational preliminary study on the fracture behaviour of two kinds of finite-size bio-inspired lattice configurations is presented. The study draws inspiration from recent investigations aimed at increasing the fracture energy of some materials through small modifications of their microstructure. Nature provides several examples of strategies used to delay or arrest damage initiation and crack propagation. Striking examples are provided by the micro-architecture of several kinds of wood. In this study, the effects on crack propagations induced by architectural alterations inspired by the microstructure of wood are computationally investigated. In an age in which tight control of the m…

010302 applied physicsMaterials scienceMechanical EngineeringMathematical analysisFracture mechanics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesFinite element methodMechanics of Materials0103 physical sciencesLattice materialsGeneral Materials Science0210 nano-technologyKey Engineering Materials
researchProduct

Vapor plume and melted zone behavior during dissimilar laser welding of titanium to aluminum alloy

2020

The present study deals with continuous Yb:YAG laser welding of pure titanium to aluminum alloy A5754 performed with different beam offsets to the joint line. Spectroscopic and morphological characterization of vapor plume exiting the keyhole was combined with post-mortem observation and energy-dispersive X-ray spectroscopy (EDX) analysis of the welds. The laser beam centered on the joint line resulted in periodic transversal inclination of a vapor jet on the aluminum side associated with a local increase of melt width and an intense spatter formation. Such behavior can be attributed to the instability of the keyhole wall from the aluminum side. The beam offset on the titanium side led to …

010302 applied physicsMaterials scienceMechanical EngineeringMetallurgyAlloychemistry.chemical_elementLaser beam welding02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyLaser01 natural sciencesPlumelaw.inventionchemistryAluminiumlawJoint line0103 physical sciencesengineeringGeneral Materials Science0210 nano-technologyBeam (structure)TitaniumProceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
researchProduct

Properties of Nanosized Ferrite Powders and Sintered Materials Prepared by the Co-Precipitation Technology, Combined with the Spray-Drying Method

2016

Cobalt and nickel ferrites powders are synthesized by the co-precipitation technology, combined with the spray-drying method. The crystallite size, specific surface area (SSA), magnetic properties of synthesized products are investigated. All the synthesized ferrites are nanocrystalline single phase materials with crystallite size of 5-6 nm, the SSA of 80-85 m2/g and the calculated particle size of 13-15 nm. After spray-drying granules of the size up to 10 μm are obtained. After thermal treatment at 550 and 950 °C SSA decreases to 40-50 m2/g and 20-22 m2/g, respectively. The saturation magnetization at these temperatures increase from 17 to 40 emu/g for NiFe2O4 and from 51 to 77 emu/g for C…

010302 applied physicsMaterials scienceMechanical EngineeringMetallurgySintering02 engineering and technologyThermal treatment021001 nanoscience & nanotechnology01 natural sciencesNanocrystalline materialChemical engineeringMechanics of MaterialsSpray dryingSpecific surface area0103 physical sciencesFerrite (magnet)General Materials ScienceParticle sizeCrystallite0210 nano-technologyKey Engineering Materials
researchProduct

Structural, microstructural and dielectric studies in multiferroic LaSrNiO4-δ prepared by mechanical milling method

2016

Abstract The solid solution LaSrNiO 4-δ has been successfully prepared by a rapid method combining mechanical milling and heat treatment. The structure and microstructure transformations were characterized by X-ray powder diffraction, scanning and transmission electron microscopy. The dielectric property was also investigated. After 10 h of milling and 8 h of heat treatment at 1300 °C, X-ray diffraction analysis revealed LaSrNiO 4-δ single phase, exhibiting tetragonal structure with space group of I4/mmm. This result was confirmed by using the ED pattern for sample using the [001] orientation. The corresponding lattice images show the compound to be well ordered, indicating the absence of s…

010302 applied physicsMaterials scienceMechanical EngineeringMetals and Alloys02 engineering and technologyDielectricAtmospheric temperature range021001 nanoscience & nanotechnologyMicrostructure01 natural sciencesCrystallographyTetragonal crystal systemMechanics of Materialsvisual_art0103 physical sciencesMaterials Chemistryvisual_art.visual_art_mediumCeramicCrystalliteComposite material0210 nano-technologyPowder diffractionSolid solutionJournal of Alloys and Compounds
researchProduct

Improve the dielectric properties of PrSrNi0.8Mn0.2O4 compounds by longer mechanical milling

2018

Abstract Structural and dielectric properties of PrSrNi 0.8 Mn 0.2 O 4 ceramics elaborated by a rapid method combining mechanical milling and heat treatment were studied for the first time. The raw materials are milled at different times ( t mil  =  0, 5, 10, 20 and 30 h) and annealed at 1300 °C for 8 h to produce a revealed PrSrNi 0.8 Mn 0.2 O 4 single phase, exhibiting tetragonal structure with space group I 4/ mmm . This result was confirmed by using the TEM/ED pattern for sample milled at 30 h using the [001] orientation. The corresponding lattice images show a well-ordered compound, indicating the absence of stacking faults and the growth of the crystallites. Giant dielectric response …

010302 applied physicsMaterials scienceMechanical EngineeringMetals and AlloysStacking02 engineering and technologyActivation energyDielectric021001 nanoscience & nanotechnology01 natural sciencesTetragonal crystal systemCrystallographyMechanics of MaterialsLattice (order)visual_art0103 physical sciencesMaterials Chemistryvisual_art.visual_art_mediumDielectric lossCeramicCrystalliteComposite material0210 nano-technologyJournal of Alloys and Compounds
researchProduct