Search results for "enzyme inhibitors"

showing 10 items of 559 documents

RAAS inhibitors are not associated with mortality in COVID-19 patients: Findings from an observational multicenter study in Italy and a meta-analysis…

2020

Abstract Objective The hypothesis that been set forward that use of Renin Angiotensin Aldosterone System (RAAS) inhibitors is associated with COVID−19 severity. We set-up a multicenter Italian collaboration (CORIST Project, ClinicalTrials.gov ID: NCT04318418 ) to retrospectively investigate the relationship between RAAS inhibitors and COVID−19 in-hospital mortality. We also carried out an updated meta-analysis on the relevant studies. Methods We analyzed 4069 unselected patients with laboratory-confirmed SARS-CoV-2 infection and hospitalized in 34 clinical centers in Italy from February 19, 2020 to May 23, 2020. The primary end-point in a time-to event analysis was in-hospital death, compar…

0301 basic medicineMalePhysiologyMiddle Aged Renin-Angiotensin SystemAngiotensin-Converting Enzyme Inhibitors030204 cardiovascular system & hematologyACE-I; ARB; COVID-19; angiotensin converting enzyme inhibitors; angiotensin receptor blockers; mortality; sartansSeverity of Illness IndexRenin-Angiotensin System0302 clinical medicineangiotensin converting enzyme inhibitorsRisk FactorsACE-I80 and overMedicineHospital MortalitySartanAged 80 and overIncidence (epidemiology)IncidenceHazard ratioAngiotensin Receptor AntagonistMiddle AgedsartansARBHospitalizationAntihypertensive AgentItalyMeta-analysisHypertensionSartansMolecular MedicineFemaleRisk assessmentHumanmedicine.medical_specialtyAngiotensin converting enzyme inhibitors; ACE-I; Angiotensin receptor blockers; ARB; Sartans; COVID-19; MortalityCoronavirus disease 2019 (COVID-19)Risk AssessmentArticleCOVID−1903 medical and health sciencesAngiotensin Receptor AntagonistsMeta-Analysis as TopicInternal medicineSeverity of illnessHumansAngiotensin receptor blockerMortalityAntihypertensive AgentsAgedPharmacologyACE-I; ARB; Angiotensin converting enzyme inhibitors; Angiotensin receptor blockers; COVID−19; Mortality; Sartans; Aged; Aged 80 and over; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Antihypertensive Agents; COVID-19; Female; Hospitalization; Humans; Hypertension; Incidence; Italy; Male; Meta-Analysis as Topic; Middle Aged; Renin-Angiotensin System; Risk Assessment; Risk Factors; Severity of Illness Index; Hospital Mortalitybusiness.industryRisk FactorCOVID-19Angiotensin-Converting Enzyme InhibitorAngiotensin receptor blockersmortalityConfidence intervalangiotensin receptor blockersAngiotensin converting enzyme inhibitors030104 developmental biologyACE-I; ARB; COVID-19 angiotensin converting enzyme inhibitors angiotensin receptor blockers mortality sartansObservational studyAngiotensin converting enzyme inhibitorbusiness
researchProduct

Addition of thiols to the double bond of dipeptide C-terminal dehydroalanine as a source of new inhibitors of cathepsin C.

2017

Addition of thiols to double bond of glycyl-dehydroalanine and phenyl-dehydroalanine esters provided micromolar inhibitors of cathepsin C. The structure-activity studies indicated that dipeptides containing N-terminal phenylalanine exhibit higher affinity towards the enzyme. A series of C-terminal S-substituted cysteines are responsible for varying interaction with S1 binding pocket of cathepsin C. Depending on diastereomer these compounds most likely act as slowly reacting substrates or competitive inhibitors. This was proved by TLC analysis of the medium in which interaction of methyl (S)-phenylalanyl-(R,S)-(S-adamantyl)cysteinate (7i) with the enzyme was studied. Molecular modeling enabl…

0301 basic medicineModels MolecularDouble bondStereochemistryPhenylalanineCysteine Proteinase InhibitorsBiochemistryCathepsin CCathepsin CSubstrate Specificity03 medical and health scienceschemistry.chemical_compoundStructure-Activity Relationship0302 clinical medicineDehydroalanineMoietyAnimalsSulfhydryl CompoundsBinding sitechemistry.chemical_classificationDipeptideAlanineBinding SitesDehydropeptidesDiastereomerEnzyme inhibitorsGeneral MedicineDipeptidesKinetics030104 developmental biologychemistryThiol addition030220 oncology & carcinogenesisCattleBiochimie
researchProduct

Identification of the Privileged Position in the Imidazo[1,2-a]pyridine Ring of Phosphonocarboxylates for Development of Rab Geranylgeranyl Transfera…

2017

Members of the Rab GTPase family are master regulators of vesicle trafficking. When disregulated, they are associated with a number of pathological states. The inhibition of RGGT, an enzyme responsible for post-translational geranylgeranylation of Rab GTPases represents one way to control the activity of these proteins. Because the number of molecules modulating RGGT is limited, we combined molecular modeling with biological assays to ascertain how modifications of phosphonocarboxylates, the first reported RGGT inhibitors, rationally improve understanding of their structure-activity relationship. We have identified the privileged position in the core scaffold of the imidazo[1,2-a]pyridine r…

0301 basic medicineMolecular modelPyridinesOrganophosphonatesProtein PrenylationAntineoplastic AgentsGTPase01 natural sciencesHeLa03 medical and health sciencesStructure-Activity RelationshipGeranylgeranylationPrenylationDrug DiscoveryStructure–activity relationshipHumansEnzyme Inhibitorsta116Cell Proliferationchemistry.chemical_classificationAlkyl and Aryl Transferasesbiology010405 organic chemistryrab geranylgeranyl transferaseta1182biology.organism_classification0104 chemical sciencesCell biologyMolecular Docking Simulation030104 developmental biologyEnzymechemistryBiochemistryrab GTP-Binding ProteinsMolecular MedicineRabHeLa CellsJournal of Medicinal Chemistry
researchProduct

Parvovirus B19V Nonstructural Protein NS1 Induces Double-Stranded Deoxyribonucleic Acid Autoantibodies and End-Organ Damage in Nonautoimmune Mice

2018

Abstract Background Viral infection is implicated in development of autoimmunity. Parvovirus B19 (B19V) nonstructural protein, NS1, a helicase, covalently modifies self double-stranded deoxyribonucleic acid (dsDNA) and induces apoptosis. This study tested whether resulting apoptotic bodies (ApoBods) containing virally modified dsDNA could induce autoimmunity in an animal model. Methods BALB/c mice were inoculated with (1) pristane-induced, (2) B19V NS1-induced, or (3) staurosporine-induced ApoBods. Serum was tested for dsDNA autoantibodies by Crithidia luciliae staining and enzyme-linked immunosorbent assay. Brain, heart, liver, and kidney pathology was examined. Deposition of self-antigens…

0301 basic medicinePathogenesis and Host ResponseviruksetvirusesB19VKidney GlomerulusSLEApoptosisAutoimmunityanti-dsDNA antibodyViral Nonstructural Proteinsmedicine.disease_causeAutoimmunityautoimmuniteettiMice0302 clinical medicineGlomerulonephritisParvovirus B19 HumanImmunology and Allergy030212 general & internal medicineEnzyme InhibitorstolerancebiologyChemistryapoptosisBrainInfectious DiseasesLivervirustauditAntibodies AntinuclearmaksatulehdusFemaleAntibodyImmunosuppressive Agentsta3111infektiot03 medical and health sciencesohjelmoitunut solukuolemaMajor Articles and Brief ReportsExtracellular VesiclesAntigenmedicineCrithidia luciliaeAnimalsapoptotic bodiesparvoviruksetParvovirusTerpenesAnti-dsDNA antibodiesMyocardiumta1183parvovirusAutoantibodyta1182DNAbiology.organism_classificationStaurosporineMolecular biology030104 developmental biologyApoptosisbiology.proteinautovasta-aineetglomerulonephritisThe Journal of Infectious Diseases
researchProduct

Prospective Evaluation of Free Energy Calculations for the Prioritization of Cathepsin L Inhibitors.

2017

Improving the binding affinity of a chemical series by systematically probing one of its exit vectors is a medicinal chemistry activity that can benefit from molecular modeling input. Herein, we compare the effectiveness of four approaches in prioritizing building blocks with better potency: selection by a medicinal chemist, manual modeling, docking followed by manual filtering, and free energy calculations (FEP). Our study focused on identifying novel substituents for the apolar S2 pocket of cathepsin L and was conducted entirely in a prospective manner with synthesis and activity determination of 36 novel compounds. We found that FEP selected compounds with improved affinity for 8 out of …

0301 basic medicinePrioritizationMolecular modelHalogenationStereochemistryCathepsin LComputational biology01 natural sciencesMolecular Docking SimulationProspective evaluationCathepsin L03 medical and health sciences0103 physical sciencesDrug DiscoveryHumansEnzyme InhibitorsBinding Sites010304 chemical physicsbiologyChemistryMolecular Docking Simulation030104 developmental biologyPyrimidinesDocking (molecular)Drug Designbiology.proteinMolecular MedicineThermodynamicsProtein BindingJournal of medicinal chemistry
researchProduct

Betulinic Acid Kills Colon Cancer Stem Cells

2016

Cancer stem cells (CSCs) are considered to be the origin of cancer and it is suggested that they are resistant to chemotherapy. Current therapies fail to eradicate CSCs and therefore selecting a resistant cell subset that is able to facilitate tumor recurrences. Betulinic acid (BetA) is a broad acting natural compound, shown to induce cell death via the inhibition of the stearoyl-CoA- desaturase (SCD- 1). This enzyme converts saturated fatty acids into unsaturated fatty acids and is over-expressed in tumor cells. Here we show that BetA induces rapid cell death in all colon CSCs tested and is able to affect the CSCs directly as shown, via the loss of clonogenic capacity. Similar results were…

0301 basic medicineProgrammed cell deathColorectal cancerMedicine (miscellaneous)Biology03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCancer stem cellBetulinic acidCell Line TumormedicineHumansEnzyme InhibitorsClonogenic assayCell DeathCancer stem cellStearoyl CoA-desaturaseCancerGeneral Medicinemedicine.diseaseBetulinic acidTriterpenesClone CellsColon cancerTumor resistance030104 developmental biologychemistryBiochemistryCell culture030220 oncology & carcinogenesisCancer treatmentColonic NeoplasmsMutationCancer researchNeoplastic Stem CellsStem cellSettore MED/46 - Scienze Tecniche Di Medicina Di LaboratorioPentacyclic TriterpenesStearoyl-CoA DesaturaseCurrent stem cell research & therapy
researchProduct

Searching for Chymase Inhibitors among Chamomile Compounds Using a Computational-Based Approach

2018

Inhibitors of chymase have good potential to provide a novel therapeutic approach for the treatment of cardiovascular diseases. We used a computational approach based on pharmacophore modeling, docking, and molecular dynamics simulations to evaluate the potential ability of 13 natural compounds from chamomile extracts to bind chymase enzyme. The results indicated that some chamomile compounds can bind to the active site of human chymase. In particular, chlorogenic acid had a predicted binding energy comparable or even better than that of some known chymase inhibitors, interacted stably with key amino acids in the chymase active site, and appeared to be more selective for chymase than other …

0301 basic medicineProteaseschlorogenic acidlcsh:QR1-502030204 cardiovascular system & hematologyMolecular Dynamics SimulationCrystallography X-RayLigandsBiochemistrylcsh:MicrobiologyArticleSerine03 medical and health sciences0302 clinical medicineChymasesCatalytic DomainHumanschamomilecardiovascular diseases; chamomile; chlorogenic acid; chymase; docking; matricin; molecular dynamics simulations; pharmacophore; Biochemistry; Molecular BiologyEnzyme InhibitorsMolecular Biologychymasechemistry.chemical_classificationBinding SitesbiologypharmacophoreChymaseActive sitemolecular dynamics simulationsmatricinAmino acidcardiovascular diseasesMolecular Docking Simulation030104 developmental biologyEnzymechemistryBiochemistryDocking (molecular)dockingbiology.proteinPharmacophoreBiomolecules
researchProduct

Efficacy and Safety of Zofenopril Versus Ramipril in the Treatment of Myocardial Infarction and Heart Failure: A Review of the Published and Unpublis…

2018

Zofenopril is a lipophilic, sulfhydryl group-containing angiotensin-converting enzyme (ACE)-inhibitor, characterized by wide tissue distribution, long duration of action, and pleiotropic effects on endothelial dysfunction. Its clinical efficacy and safety have been described in the four randomized controlled trials of the SMILE program, which globally enrolled more than 3600 patients in post-acute myocardial infarction (AMI) setting. The SMILE-4 study specifically selected patients with left ventricular dysfunction at admission, and compared the effects of zofenopril or ramipril in combination with acetylsalicylic acid (ASA). Zofenopril demonstrated its superiority over ramipril in reducing…

0301 basic medicineRamiprilmedicine.medical_specialtyCaptoprilPopulationMyocardial InfarctionCardiologyAngiotensin-Converting Enzyme InhibitorsHeart failureReviewAcute myocardial infarction030204 cardiovascular system & hematologylaw.inventionZofenopril03 medical and health scienceschemistry.chemical_compound0302 clinical medicineRandomized controlled trialDouble-Blind MethodRamiprillawInternal medicineAcute myocardial infarction; Angiotensin-converting enzyme inhibitors; Cardiology; Heart failure; Left ventricular dysfunction; Ramipril; Zofenopril; Pharmacology (medical)MedicineHumansPharmacology (medical)Myocardial infarctioneducationRandomized Controlled Trials as Topiceducation.field_of_studyLeft ventricular dysfunctionEjection fractionbusiness.industryGeneral Medicinemedicine.diseaseZofenopril030104 developmental biologyTreatment OutcomechemistryAngiotensin-converting enzyme inhibitorHeart failureCardiologyNumber needed to treatbusinessmedicine.drug
researchProduct

GSK-3 in liver diseases: Friend or foe?

2020

Liver diseases, including hepatitis due to hepatitis B or C virus infection, non-alcoholic fatty liver disease, and hepatocellular carcinoma pose major challenges for overall health due to limited curative treatment options. Thus, there is an urgent need to develop new therapeutic strategies for the treatment of these diseases. A better understanding of the signaling pathways involved in the pathogenesis of liver diseases can help to improve the efficacy of emerging therapies, mainly based on pharmacological approaches, which influence one or more specific molecules involved in key signal transduction pathways. These emerging therapies are very promising for the prevention and treatment of …

0301 basic medicineSignaling pathwaysDruggabilityDiseaseBioinformaticsNon-alcoholic fatty liver disease (NAFLD)Glycogen Synthase Kinase 303 medical and health sciences0302 clinical medicineGSK-3Glycogen synthase kinase 3 (GSK-3)AnimalsHumansMedicineHepatitis B virus (HBV)Molecular Targeted TherapyEnzyme InhibitorsHepatocellular carcinoma (HCC)Molecular BiologyHepatitisbusiness.industryLiver DiseasesFatty liverDisease ManagementHepatitis C virus (HCV)Cell BiologyHepatitis Bmedicine.disease030104 developmental biologyGene Expression RegulationMultigene Family030220 oncology & carcinogenesisHepatocellular carcinomaHost-Pathogen InteractionsDisease SusceptibilitySignal transductionbusinessBiomarkersSignal TransductionBiochimica et Biophysica Acta (BBA) - Molecular Cell Research
researchProduct

Reverse screening on indicaxanthin from Opuntia ficus-indica as natural chemoactive and chemopreventive agent

2018

Indicaxanthin is a bioactive and bioavailable betalain pigment extracted from Opuntia ficus indica fruits. Indicaxanthin has pharmacokinetic proprieties, rarely found in other phytochemicals, and it has been demonstrated that it provides a broad-spectrum of pharmaceutical activity, exerting anti-proliferative, anti-inflammatory, and neuromodulator effects. The discovery of the Indicaxanthin physiological targets plays an important role in understanding the biochemical mechanism. In this study, combined reverse pharmacophore mapping, reverse docking, and text-based database search identified Inositol Trisphosphate 3-Kinase (ITP3K-A), Glutamate carboxypeptidase II (GCPII), Leukotriene-A4 hydr…

0301 basic medicineStatistics and ProbabilityMolecular dynamicPyridinesKainate receptorIndicaxanthinPhytochemical01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyDocking03 medical and health scienceschemistry.chemical_compoundNeoplasmsGlutamate carboxypeptidase IIData MiningHumansEnzyme InhibitorsMM-GBSAPharmacophore modelingBinding SitesGeneral Immunology and MicrobiologyReverse screening010405 organic chemistryAnti-cancerApplied MathematicsPhosphodiesteraseOpuntiaPhosphoserine phosphataseInositol trisphosphateGeneral MedicineAntineoplastic Agents Phytogenic0104 chemical sciencesBetaxanthinsNeoplasm ProteinsNeuromodulatorMolecular Docking SimulationAnti-inflammatory agent030104 developmental biologychemistryBiochemistryDocking (molecular)Modeling and SimulationPharmacophoreGeneral Agricultural and Biological SciencesIndicaxanthin
researchProduct