Search results for "error estimate"

showing 10 items of 22 documents

On a global superconvergence of the gradient of linear triangular elements

1987

Abstract We study a simple superconvergent scheme which recovers the gradient when solving a second-order elliptic problem in the plane by the usual linear elements. The recovered gradient globally approximates the true gradient even by one order of accuracy higher in the L 2 -norm than the piecewise constant gradient of the Ritz—Galerkin solution. A superconvergent approximation to the boundary flux is presented as well.

Applied MathematicsMathematical analysisOrder of accuracySuperconvergenceglobal superconvergence for the gradientComputer Science::Numerical AnalysisGlobal superconvergence for the gradientMathematics::Numerical AnalysisNonlinear conjugate gradient methodElliptic curveComputational Mathematicserror estimatesNorm (mathematics)boundary fluxPiecewisepost-processing of the Ritz—Galerkin schemeGradient descentGradient methodMathematicsJournal of Computational and Applied Mathematics
researchProduct

Fully reliable a posteriori error control for evolutionary problems

2015

Cauchy problemevolutionary problem of parabolic typeerror indicatorsosittaisdifferentiaaliyhtälötnumeeriset menetelmätvirheetOstrowski estimatesreaction-diffusion equationPoincaré-type estimatesnumeerinen analyysifunctional type a posteriori error estimatesepäyhtälötvirheanalyysiPicard-Lindelöf methoddifferentiaaliyhtälöt
researchProduct

Guaranteed and computable error bounds for approximations constructed by an iterative decoupling of the Biot problem

2021

The paper is concerned with guaranteed a posteriori error estimates for a class of evolutionary problems related to poroelastic media governed by the quasi-static linear Biot equations. The system is decoupled by employing the fixed-stress split scheme, which leads to an iteratively solved semi-discrete system. The error bounds are derived by combining a posteriori estimates for contractive mappings with functional type error control for elliptic partial differential equations. The estimates are applicable to any approximation in the admissible functional space and are independent of the discretization method. They are fully computable, do not contain mesh-dependent constants, and provide r…

DiscretizationPoromechanics010103 numerical & computational mathematicsContraction mappings01 natural sciencesFOS: MathematicsDecoupling (probability)Applied mathematicsMathematics - Numerical Analysis0101 mathematicsvirheanalyysiMathematicsa posteriori error estimatesosittaisdifferentiaaliyhtälötA posteriori error estimatesfixed-stress split iterative schemeBiot numberNumerical Analysis (math.NA)Biot problem010101 applied mathematicsComputational MathematicsBiot problem; Fixed-stress split iterative scheme; A posteriori error estimates; Contraction mappingsComputational Theory and MathematicsElliptic partial differential equationModeling and SimulationNorm (mathematics)contraction mappingsA priori and a posterioriFixed-stress split iterative schemenumeerinen analyysiapproksimointiError detection and correction
researchProduct

Localized forms of the LBB condition and a posteriori estimates for incompressible media problems

2018

Abstract The inf–sup (or LBB) condition plays a crucial role in analysis of viscous flow problems and other problems related to incompressible media. In this paper, we deduce localized forms of this condition that contain a collection of local constants associated with subdomains instead of one global constant for the whole domain. Localized forms of the LBB inequality imply estimates of the distance to the set of divergence free fields. We use them and deduce fully computable bounds of the distance between approximate and exact solutions of boundary value problems arising in the theory of viscous incompressible fluids. The estimates are valid for approximations, which satisfy the incompres…

General Computer ScienceMathematics::Analysis of PDEs01 natural sciencesMeasure (mathematics)Domain (mathematical analysis)Theoretical Computer SciencePhysics::Fluid DynamicsIncompressible flowBoundary value problem0101 mathematicsDivergence (statistics)Mathematicsta113LBB conditiona posteriori error estimatesNumerical AnalysisApplied Mathematics010102 general mathematicsMathematical analysista111010101 applied mathematicsincompressible viscous fluidsModeling and SimulationCompressibilityA priori and a posterioriConstant (mathematics)Mathematics and Computers in Simulation
researchProduct

Functional A Posteriori Error Estimates for Time-Periodic Parabolic Optimal Control Problems

2015

This article is devoted to the a posteriori error analysis of multiharmonic finite element approximations to distributed optimal control problems with time-periodic state equations of parabolic type. We derive a posteriori estimates of the functional type, which are easily computable and provide guaranteed upper bounds for the state and co-state errors as well as for the cost functional. These theoretical results are confirmed by several numerical tests that show high efficiency of the a posteriori error bounds. peerReviewed

Mathematical optimizationControl and OptimizationMathematicsofComputing_NUMERICALANALYSISFinite element approximations010103 numerical & computational mathematicsType (model theory)01 natural sciencesparabolic time-periodic optimal control problemsError analysisFOS: MathematicsApplied mathematicsMathematics - Numerical AnalysisNumerical testsfunctional a posteriori error estimates0101 mathematicsMathematics - Optimization and Control49N20 35Q61 65M60 65F08Mathematicsta113Time periodicta111Numerical Analysis (math.NA)State (functional analysis)Optimal controlComputer Science Applications010101 applied mathematicsOptimization and Control (math.OC)multiharmonic finite element methodsSignal ProcessingA priori and a posterioriAnalysisNumerical Functional Analysis and Optimization
researchProduct

Error Estimates for a Class of Elliptic Optimal Control Problems

2016

In this article, functional type a posteriori error estimates are presented for a certain class of optimal control problems with elliptic partial differential equation constraints. It is assumed that in the cost functional the state is measured in terms of the energy norm generated by the state equation. The functional a posteriori error estimates developed by Repin in the late 1990s are applied to estimate the cost function value from both sides without requiring the exact solution of the state equation. Moreover, a lower bound for the minimal cost functional value is derived. A meaningful error quantity coinciding with the gap between the cost functional values of an arbitrary admissible …

Mathematical optimizationControl and OptimizationNumerical analysis010102 general mathematicsta111010103 numerical & computational mathematicsOptimal control01 natural sciencesUpper and lower boundsComputer Science ApplicationsExact solutions in general relativityElliptic partial differential equationerror estimatesNorm (mathematics)Signal ProcessingA priori and a posterioriNumerical testselliptic optimal control problems0101 mathematicsAnalysisMathematics
researchProduct

Numerical methods for nonlinear inverse problems

1996

AbstractInverse problems of distributed parameter systems with applications to optimal control and identification are considered. Numerical methods and their numerical analysis for solving this kind of inverse problems are presented, main emphasis being on the estimates of the rate of convergence for various schemes. Finally, based on the given error estimates, a two-grid method and related algorithms are introduced, which can be used to solve nonlinear inverse problems effectively.

Nonlinear inverse problemInverse problemsMathematical optimizationFinite element methodNumerical analysisApplied MathematicsInverse problemOptimal controlFinite element methodTwo-grid methodIdentification (information)Computational MathematicsRate of convergenceDistributed parameter systemError estimatesMathematicsJournal of Computational and Applied Mathematics
researchProduct

A posteriori estimates for a coupled piezoelectric model

2017

Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)

Physicsa posteriori error estimatesosittaisdifferentiaaliyhtälötNumerical Analysis510: Mathematik010504 meteorology & atmospheric sciencesPiezoelectricity problemcoupled systems of partial differential equations01 natural sciencesPiezoelectricity010101 applied mathematicsCoupled systems of partial differential equationsModeling and Simulationpiezoelectricity problemApplied mathematicsA priori and a posteriorinumeerinen analyysi0101 mathematicsmatemaattiset mallitvirheanalyysiA posteriori error estimate0105 earth and related environmental sciences
researchProduct

Localized forms of the LBB condition and a posteriori estimates for incompressible media problems

2018

The inf–sup (or LBB) condition plays a crucial role in analysis of viscous flow problems and other problems related to incompressible media. In this paper, we deduce localized forms of this condition that contain a collection of local constants associated with subdomains instead of one global constant for the whole domain. Localized forms of the LBB inequality imply estimates of the distance to the set of divergence free fields. We use them and deduce fully computable bounds of the distance between approximate and exact solutions of boundary value problems arising in the theory of viscous incompressible fluids. The estimates are valid for approximations, which satisfy the incompressibility …

Physics::Fluid DynamicsLBB conditiona posteriori error estimatesincompressible viscous fluidsMathematics::Analysis of PDEs
researchProduct

Exact constants in Poincaré type inequalities for functions with zero mean boundary traces

2014

In this paper, we investigate Poincare type inequalities for the functions having zero mean value on the whole boundary of a Lipschitz domain or on a measurable part of the boundary. We find exact and easily computable constants in these inequalities for some basic domains (rectangles, cubes, and right triangles) and discuss applications of the inequalities to quantitative analysis of partial differential equations. Copyright © 2014 John Wiley & Sons, Ltd.

Zero meanPartial differential equationeigenvalue problemsGeneral MathematicsMathematical analysista111General EngineeringBoundary (topology)Value (computer science)Type (model theory)Physics::History of PhysicsPoincare type inequalitiessymbols.namesakeLipschitz domainerror estimatesPoincaré conjecturesymbolsfunctional inequalitiesMathematicsMathematical Methods in the Applied Sciences
researchProduct