Search results for "europium"

showing 10 items of 112 documents

CCDC 2089885: Experimental Crystal Structure Determination

2021

Related Article: Valentina V. Utochnikova, Andrey N. Aslandukov, Andrey A. Vashchenko, Alexander S. Goloveshkin, Alexey A. Alexandrov, Raitis Grzibovskis, Jean-Claude G. Bünzli|2021|Dalton Trans.|50|12806|doi:10.1039/D1DT02269E

Space GroupCrystallographyCrystal Systemtris(acetylacetonato)-(47-diphenyl-110-phenanthroline)-europium(iii)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 953139: Experimental Crystal Structure Determination

2014

Related Article: Sara Rodríguez, Perla Elizondo, Sylvain Bernès, Nancy Pérez, Ricardo Bustos, Enrique García-España|2015|Polyhedron|85|10|doi:10.1016/j.poly.2014.08.041

Space GroupCrystallographyDiaqua-tris(nitrato)-bis(22'-(pyridine-26-diylbis(methyleneoxy))dibenzaldehyde)-europiumCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1453997: Experimental Crystal Structure Determination

2016

Related Article: Jashobanta Sahoo, Rajendran Arunachalam, Palani S. Subramanian, Eringathodi Suresh, Arto Valkonen, Kari Rissanen, Markus Albrecht|2016|Angew.Chem.,Int.Ed.|55|9625|doi:10.1002/anie.201604093

Space GroupCrystallographybis(mu-N'1-((pyridin-2-yl)methylene)-N'4-((pyridin-2-yl)methylene)succinohydrazide)-bis(nitrato)-tetra-aqua-di-europium(iii) tetranitrate tetrahydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1833445: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographycatena-((mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxylatopyridin-1-ium))-diaqua-europium bromide trifluoromethanesulfonate hydrate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 764597: Experimental Crystal Structure Determination

2010

Related Article: D.Visinescu, O.Fabelo, C.Ruiz-Perez, F.Lloret, M.Julve|2010|CrystEngComm|12|2454|doi:10.1039/c002305a

Space GroupCrystallographytetrakis(mu~2~-Cyano)-(mu~2~-22'-bipyrimidine)-hexa-aqua-dodecacyano-bis(nitrato-OO')-tetrakis(110-phenanthroline-NN')-di-europium(iii)-tetra-iron(iii) octahydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1962564: Experimental Crystal Structure Determination

2020

Related Article: Matias Zapata-Lizama, Patricio Hermosilla-Ibáñez, Diego Venegas-Yazigi, Guillermo Mínguez Espallargas, Lauro June Queiroz Maia, Gisane Gasparotto, Ricardo Costa De Santana, Walter Cañón-Mancisidor|2020|Inorg.Chem.Front.|7|3049|doi:10.1039/D0QI00232A

Space GroupCrystallographytris(tetra-n-butylammonium) (mu-hydroxo)-tricosakis(mu-oxo)-(mu-phosphato)-undecaoxo-bis(110-phenanthroline)-europium-undeca-tungsten monohydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

Magnetic Ordering and Spin Dynamics of Ba1-xEuxSi Phases

2011

We have investigated the magnetic ordering and spin dynamics of the solid solution series Ba1–xEuxSi with 0 < x ≤ 1 applying X-ray diffraction, electric conductivity measurements, Mossbauer spectroscopy, muon spin depolarization, and neutron diffraction. Our results suggest a spin glass-like behavior of Ba1–xEuxSi for concentrations close to x = 0.3 exist. Different spin ordering phenomena are found, which are dependent on the relative europium concentrations.

Spin glassCondensed matter physicsSpin polarizationChemistryNeutron diffractionchemistry.chemical_elementMuon spin spectroscopy010402 general chemistry01 natural sciences0104 chemical sciencesInorganic ChemistrySpin wave0103 physical sciences010306 general physicsEuropiumSpin-½Solid solutionZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE
researchProduct

Binding Sites, Vibrations and Spin-Lattice Relaxation Times in Europium(II)-Based Metallofullerene Spin Qubits.

2021

Abstract To design molecular spin qubits with enhanced quantum coherence, a control of the coupling between the local vibrations and the spin states is crucial, which could be realized in principle by engineering molecular structures via coordination chemistry. To this end, understanding the underlying structural factors that govern the spin relaxation is a central topic. Here, we report the investigation of the spin dynamics in a series of chemically designed europium(II)‐based endohedral metallofullerenes (EMFs). By introducing a unique structural difference, i. e. metal‐cage binding site, while keeping other molecular parameters constant between different complexes, these manifest the ke…

Spin statesFOS: Physical scienceschemistry.chemical_element010402 general chemistry01 natural sciencesMolecular physicsCatalysischemistry.chemical_compoundVery Important PaperPhysics - Chemical PhysicsPhysics::Atomic and Molecular ClustersPhysics - Atomic and Molecular Clustersspin-vibration couplingQuantumeuropiumSpin-½Chemical Physics (physics.chem-ph)Full Paper010405 organic chemistryChemistryNanotecnologiaOrganic ChemistryRelaxation (NMR)Spin–lattice relaxationfullerenesGeneral ChemistryQuímicaFull Papers0104 chemical sciences3. Good healthQubitMetallofullerenemagnetic propertiesAtomic and Molecular Clusters (physics.atm-clus)Europiumspin qubitsChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Valence instabilities and inhomogeneous mixed valence in some ternary europium compounds

1997

Abstract Photoemission spectra and TB-LMTO-ASA band structure calculations of some mixed valency europium compounds hve been studied. The band structures are compared with the band structures of the isostructural lanthanum and strontium compounds. Surprisingly a 4f density of states in the vicinity of the Fermi level is observed in inhomogenous mixed valency EuPd 3 B, Eu 3 S 4 , and EuPdP. Indeed a van Hove Singularity (vHS) derived from the d states of La and Pd or p states of boron or phosphorous are found in La 3 S 4 , LaPd 3 B and SrPdP. The valence instability in the Eu compounds is thus not necessarily due to Eu 4f states. The results also provide some ground for the assumption that i…

Valence (chemistry)Condensed matter physicsChemistryMechanical EngineeringVan Hove singularityFermi levelMetals and AlloysValencychemistry.chemical_elementSemimetalsymbols.namesakeMechanics of MaterialsMaterials ChemistryDensity of statessymbolsEuropiumQuasi Fermi level
researchProduct

Formation of nanostructures in Eu3+ doped glass-ceramics: an XAS study.

2012

We describe the results of x-ray absorption experiments carried out to deduce structural and chemical information in Eu(3+) doped, transparent, oxyfluoride glass and nanostructured glass-ceramic samples. The spectra were measured at the Pb and Eu-L(III) edges. The Eu environment in the glass samples is observed to be similar to that of EuF(3). Complementary x-ray diffraction experiments show that thermal annealing creates β-PbF(2) type nanocrystals. X-ray absorption indicates that Eu ions act as seeds in the nanocrystal formation. There is evidence of interstitial fluorine atoms around Eu ions as well as Eu dimers. X-ray absorption at the Pb-L(III) edge shows that after the thermal treatmen…

X-ray absorption spectroscopyCeramicsMaterials scienceNanostructureDopingMolecular ConformationMineralogyThermal treatmentCondensed Matter PhysicsSpectral linePhase TransitionNanostructuresX-Ray Absorption SpectroscopyNanocrystalEuropiumvisual_artMaterials Testingvisual_art.visual_art_mediumPhysical chemistryGeneral Materials ScienceCeramicGlassAbsorption (chemistry)Particle SizeCrystallizationJournal of physics. Condensed matter : an Institute of Physics journal
researchProduct