Search results for "expression"

showing 10 items of 5168 documents

NMD-Based Gene Regulation—A Strategy for Fitness Enhancement in Plants?

2019

Abstract Post-transcriptional RNA quality control is a vital issue for all eukaryotes to secure accurate gene expression, both on a qualitative and quantitative level. Among the different mechanisms, nonsense-mediated mRNA decay (NMD) is an essential surveillance system that triggers degradation of both aberrant and physiological transcripts. By targeting a substantial fraction of all transcripts for degradation, including many alternative splicing variants, NMD has a major impact on shaping transcriptomes. Recent progress on the transcriptome-wide profiling and physiological analyses of NMD-deficient plant mutants revealed crucial roles for NMD in gene regulation and environmental response…

0106 biological sciences0301 basic medicinePhysiologyNonsense-mediated decayMutantMRNA DecayPlant ScienceComputational biologyBiology01 natural sciencesTranscriptome03 medical and health sciencesSpecies SpecificityGene Expression Regulation PlantGene expressionPlant Physiological PhenomenaRegulation of gene expressionRNA quality controlGene Expression ProfilingAlternative splicingCell BiologyGeneral MedicinePlantsNonsense Mediated mRNA DecayAlternative Splicing030104 developmental biologyTranscriptome010606 plant biology & botanyPlant and Cell Physiology
researchProduct

Multifactorial and Species-Specific Feedback Regulation of the RNA Surveillance Pathway Nonsense-Mediated Decay in Plants

2018

Abstract Nonsense-mediated decay (NMD) is an RNA surveillance mechanism that detects aberrant transcript features and triggers degradation of erroneous as well as physiological RNAs. Originally considered to be constitutive, NMD is now recognized to be tightly controlled in response to inherent signals and diverse stresses. To gain a better understanding of NMD regulation and its functional implications, we systematically examined feedback control of the central NMD components in two dicot and one monocot species. On the basis of the analysis of transcript features, turnover rates and steady-state levels, up-frameshift (UPF) 1, UPF3 and suppressor of morphological defects on genitalia (SMG)…

0106 biological sciences0301 basic medicinePhysiologyRNA StabilityNonsense-mediated decayArabidopsisPlant ScienceBiology01 natural scienceslaw.inventionDephosphorylation03 medical and health sciencesSpecies SpecificityGene Expression Regulation PlantlawArabidopsis thalianaFeedback PhysiologicalRegulation of gene expressionArabidopsis ProteinsMechanism (biology)RNACell BiologyGeneral MedicineRNA surveillancebiology.organism_classificationNonsense Mediated mRNA DecayCell biology030104 developmental biologyRNA PlantSuppressorCarrier ProteinsRNA Helicases010606 plant biology & botanyPlant and Cell Physiology
researchProduct

Phosphoglycerate Kinases Are Co-Regulated to Adjust Metabolism and to Optimize Growth

2017

[EN] In plants, phosphoglycerate kinase (PGK) converts 1,3-bisphosphoglycerate into 3-phosphoglycerate in glycolysis but also participates in the reverse reaction in gluconeogenesis and the Calvin-Benson cycle. In the databases, we found three genes that encode putative PGKs. Arabidopsis (Arabidopsis thaliana) PGK1 was localized exclusively in the chloroplasts of photosynthetic tissues, while PGK2 was expressed in the chloroplast/plastid of photosynthetic and nonphotosynthetic cells. PGK3 was expressed ubiquitously in the cytosol of all studied cell types. Measurements of carbohydrate content and photosynthetic activities in PGK mutants and silenced lines corroborated that PGK1 was the phot…

0106 biological sciences0301 basic medicinePhysiologyResearch Articles - Focus IssueMutantArabidopsisPlant ScienceGlyceric AcidsPlant Roots01 natural sciencesChloroplastGene03 medical and health sciencesCytosolGene Expression Regulation PlantArabidopsisGeneticsBIOQUIMICA Y BIOLOGIA MOLECULARMetabolomicsArabidopsis thalianaBamboo-Mosaic-VirusPlastidPhosphoglycerate kinaseGas-ChromatographybiologyArabidopsis ProteinsWild typefood and beveragesMetabolismArabidopsis-ThalianaPlant Components AerialPlants Genetically Modifiedbiology.organism_classificationHelianthus-Annuus L.3-Phosphoglycerate kinaseChloroplastPhosphoglycerate Kinase030104 developmental biologyBiochemistryMultigene FamilyMutationNicotiana-BenthamianaFISIOLOGIA VEGETALPlastics010606 plant biology & botanyPhosphorylating glyceraldehyde-3-phosphate dehydrogenaseGastric-Cancer
researchProduct

Tonoplast aquaporins facilitate lateral root emergence\ud

2016

Pôle SPE IPM UB; International audience; Aquaporins (AQPs) are water channels allowing fast and passive diffusion of water across cell membranes. It was hypothesized that AQPs contribute to cell elongation processes by allowing water influx across the plasma membrane and the tonoplast to maintain adequate turgor pressure. Here, we report that, in Arabidopsis (Arabidopsis thaliana), the highly abundant tonoplast AQP isoforms AtTIP1;1, AtTIP1;2, and AtTIP2;1 facilitate the emergence of new lateral root primordia (LRPs). The number of lateral roots was strongly reduced in the triple tip mutant, whereas the single, double, and triple tip mutants showed no or minor reduction in growth of the mai…

0106 biological sciences0301 basic medicinePhysiology[SDV]Life Sciences [q-bio]MeristemPopulationArabidopsisMorphogenesisAquaporinPlant ScienceAquaporinsPlant Roots01 natural sciences03 medical and health sciencesGene Expression Regulation PlantArabidopsisGeneticsProtein IsoformsArabidopsis thaliana[SDV.BV]Life Sciences [q-bio]/Vegetal Biologyeducationeducation.field_of_studyMicroscopy ConfocalWater transportbiologyurogenital systemArabidopsis ProteinsReverse Transcriptase Polymerase Chain ReactionGene Expression ProfilingLateral rootQKGene Expression Regulation DevelopmentalWaterBiological TransportArticlesMeristemPlants Genetically Modifiedbiology.organism_classificationMolecular biologyCell biology030104 developmental biologyMutationVacuoles[SDE]Environmental Sciences010606 plant biology & botany
researchProduct

Identification of conserved genes linked to responses to abiotic stresses in leaves among different plant species

2020

As a consequence of global climate change, certain stress factors that have a negative impact on crop productivity such as heat, cold, drought and salinity are becoming increasingly prevalent. We conducted a meta-analysis to identify genes conserved across plant species involved in (1) general abiotic stress conditions, and (2) specific and unique abiotic stress factors (drought, salinity, extreme temperature) in leaf tissues. We collected raw data and re-analysed eight RNA-Seq studies using our previously published bioinformatic pipeline. A total of 68 samples were analysed. Gene set enrichment analysis was performed using MapMan and PageMan whereas DAVID (Database for Annotation, Visuali…

0106 biological sciences0301 basic medicinePlant ScienceProtein degradationBiologyGenes Plant01 natural sciences03 medical and health scienceschemistry.chemical_compoundGene Expression Regulation PlantStress PhysiologicalSettore AGR/07 - Genetica AgrariaMYBSecondary metabolismAbscisic acidGeneAbiotic componentGeneticsabiotic-stresses differentially expressed genes leaves meta-analysis RNA-Seq transcriptomic.Abiotic stressGene Expression Profilingfungifood and beveragesPlant LeavesSettore AGR/03 - Arboricoltura Generale E Coltivazioni Arboree030104 developmental biologychemistryCinnamoyl-CoA reductaseAgronomy and Crop Science010606 plant biology & botany
researchProduct

Blattella germanica displays a large arsenal of antimicrobial peptide genes

2020

Defence systems against microbial pathogens are present in most living beings. The German cockroach Blattella germanica requires these systems to adapt to unhealthy environments with abundance of pathogenic microbes, in addition to potentially control its symbiotic systems. To handle this situation, four antimicrobial gene families (defensins, termicins, drosomycins and attacins) were expanded in its genome. Remarkably, a new gene family (blattellicins) emerged recently after duplication and fast evolution of an attacin gene, which is now encoding larger proteins with the presence of a long stretch of glutamines and glutamic acids. Phylogenetic reconstruction, within Blattellinae, suggests …

0106 biological sciences0301 basic medicinePore Forming Cytotoxic ProteinsGenome InsectEvolutionary biology010603 evolutionary biology01 natural sciencesGenomeArticle03 medical and health sciencesProtein DomainsPhylogeneticsGene duplicationGene expressionGene familyAnimalsAmino Acid SequenceSymbiosisGenePhylogenyRegulation of gene expressionGeneticsGerman cockroachMultidisciplinarybiologyAntimicrobial responsesBlattellidaebiology.organism_classificationGenome evolution030104 developmental biologyGene Expression RegulationEntomology
researchProduct

Functional characterization of the chaperon-like protein Cdc48 in cryptogein-induced immune response in tobacco

2017

SPEIPMUBINRASUPDATDOCT; Cdc48, a molecular chaperone conserved in different kingdoms, is a member of the AAA+ family contributing to numerous processes in mammals including proteins quality control and degradation, vesicular trafficking, autophagy and immunity. The functions of Cdc48 plant orthologues are less understood. We previously reported that Cdc48 is regulated by S-nitrosylation in tobacco cells undergoing an immune response triggered by cryptogein, an elicitin produced by the oomycete Phytophthora cryptogea. Here, we inv estigated the function of NtCdc48 in cryptogein signalling and induced hypersensitive-like cell death. NtCdc48 was found to accumulate in elicited cells at both th…

0106 biological sciences0301 basic medicineProgrammed cell deathPhysiologyImmunoprecipitationNitrosation[SDV]Life Sciences [q-bio]PopulationPlant ScienceBiologyBioinformatics01 natural sciencesdefence responsescryptogeinFungal Proteins03 medical and health sciencesImmune systemGene Expression Regulation PlantValosin Containing ProteinPlant CellsTobaccoRNA MessengereducationPlant ProteinsRegulation of gene expressioneducation.field_of_studyFungal protein[ SDV ] Life Sciences [q-bio]AutophagyElicitinCell biology030104 developmental biologycell deathChromatography GelCdc48 partnersNtCdc48Protein Binding010606 plant biology & botany
researchProduct

Molecular signatures of silencing suppression degeneracy from a complex RNA virus

2021

As genomic architectures become more complex, they begin to accumulate degenerate and redundant elements. However, analyses of the molecular mechanisms underlying these genetic architecture features remain scarce, especially in compact but sufficiently complex genomes. In the present study, we followed a proteomic approach together with a computational network analysis to reveal molecular signatures of protein function degeneracy from a plant virus (as virus-host protein-protein interactions). We employed affinity purification coupled to mass spectrometry to detect several host factors interacting with two proteins of Citrus tristeza virus (p20 and p25) that are known to function as RNA sil…

0106 biological sciences0301 basic medicineProteomicsCitrusInteraction NetworksPathogenesisPlant Sciencemedicine.disease_causePathology and Laboratory Medicine01 natural sciencesInteractomeBiochemistryBimolecular fluorescence complementationRNA interferenceRNA silencing supressorsCitrus tristeza virusMedicine and Health SciencesDegeneracy (biology)Protein Interaction MapsBiology (General)H20 Plant diseasesPlant ProteinsEcologybiologyPlant virusesEukaryotaArgonautePlantsSmall interfering RNANucleic acidsRNA silencingComputational Theory and MathematicsGenetic interferenceExperimental Organism SystemsModeling and SimulationProteomeArgonaute ProteinsHost-Pathogen InteractionsRNA ViralEpigeneticsResearch ArticleClosterovirusRNA virusViral proteinQH301-705.5Arabidopsis ThalianaPlant PathogensComputational biologyGenome ViralBrassicaResearch and Analysis MethodsModels BiologicalPlant Viral Pathogens03 medical and health sciencesCellular and Molecular NeuroscienceViral ProteinsModel OrganismsPlant and Algal ModelsTobaccomedicineGeneticsGenomesNon-coding RNAProtein InteractionsMolecular signaturesMolecular BiologyEcology Evolution Behavior and SystematicsPlant DiseasesHost Microbial InteractionsBiology and life sciencesMass spectrometryOrganismsComputational BiologyProteinsRNA virusPlant Pathologybiology.organism_classificationGene regulationRepressor Proteins030104 developmental biologyU30 Research methodsAnimal StudiesRNAGene expression010606 plant biology & botanyF30 Plant genetics and breeding
researchProduct

Sugar exchanges in arbuscular mycorrhiza: RiMST5 and RiMST6, two novel Rhizophagus irregularis monosaccharide transporters, are involved in both suga…

2016

SPE IPM INRA UB CT1; International audience; Arbuscular mycorrhizal (AM) fungi are associated with about 80% of land plants. AM fungi provide inorganic nutrients to plants and in return up to 20% of the plant-fixed CO2 is transferred to the fungal symbionts. Since AM fungi are obligate biotrophs, unraveling how sugars are provided to the fungus partner is a key for understanding the functioning of the symbiosis. In this study, we identified two new monosaccharide transporters from Rhizophagus irregularis (RiMST5 and RiMST6) that we characterized as functional high affinity monosaccharide transporters. RiMST6 was characterized as a glucose specific, high affinity H(+) co-transporter. We prov…

0106 biological sciences0301 basic medicineRhizophagus irregularisLightPhysiology[SDV]Life Sciences [q-bio]Plant Sciencearbuscular mycorrhizal fungus01 natural sciencesrhizophagus irregularisGlomeromycotaSoilGene Expression Regulation PlantMycorrhizaeMedicagoPhylogeny2. Zero hungerMutualism (biology)Fungal proteinReverse Transcriptase Polymerase Chain Reactionglucose specificMonosaccharidesfood and beverageshigh affinity H+ co-transporterhigh affinity transporterArbuscular mycorrhizaBiochemistry[SDE]Environmental SciencesFungusSaccharomyces cerevisiaeBiologyFungal Proteins03 medical and health sciencesSymbiosisStress PhysiologicalBotanyGenetics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyRNA MessengerGlomeromycotaObligateCell MembraneGenetic Complementation TestfungiMST5MST6Membrane Transport Proteins15. Life on landmonosaccharide transporterbiology.organism_classification030104 developmental biologyGlucose010606 plant biology & botany
researchProduct

Transcriptome analysis of the Populus trichocarpa–Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under N…

2017

Nutrient transfer is a key feature of the arbuscular mycorrhizal (AM) symbiosis. Valuable mineral nutrients are transferred from the AM fungus to the plant, increasing its fitness and productivity, and, in exchange, the AM fungus receives carbohydrates as an energy source from the plant. Here, we analyzed the transcriptome of the Populus trichocarpa-Rhizophagus irregularis symbiosis using RNA-sequencing of non-mycorrhizal or mycorrhizal fine roots, with a focus on the effect of nitrogen (N) starvation. In R. irregularis, we identified 1,015 differentially expressed genes, whereby N starvation led to a general induction of gene expression. Genes of the functional classes of cell growth, memb…

0106 biological sciences0301 basic medicineRhizophagus irregularisMICROBE INTERACTIONSPhysiologyarbuscule[SDV]Life Sciences [q-bio]racine finePlant Science01 natural sciencesnitrogenTranscriptomeGene Expression Regulation PlantMycorrhizaeLOTUS-JAPONICUSGLOMUS-INTRARADICESPlant ProteinsGENE-EXPRESSION2. Zero hungerazotePHOSPHATE TRANSPORTERAMMONIUM TRANSPORTERSorgan transplantationGeneral Medicinefood shortageMedicago truncatulaArbuscular mycorrhizasymbiose mycorhiziennePopulusfamineEnergy sourceARBUSCULAR MYCORRHIZABiologySULFUR STARVATION03 medical and health sciencesPHOSPHORUS ACQUISITIONSymbiosistransport de nutrimentsBotanySymbiosisGene Expression Profilingblack cottonwoodCell Biologybiology.organism_classificationMEDICAGO-TRUNCATULATransplantationpopulus trichocarpa030104 developmental biologyMembrane biogenesis010606 plant biology & botanytransplantation
researchProduct