Search results for "fixed"

showing 10 items of 639 documents

A note on the admissibility of modular function spaces

2017

Abstract In this paper we prove the admissibility of modular function spaces E ρ considered and defined by Kozlowski in [17] . As an application we get that any compact and continuous mapping T : E ρ → E ρ has a fixed point. Moreover, we prove that the same holds true for any retract of E ρ .

Discrete mathematicsApplied Mathematics010102 general mathematicsModular formModular function spaceFixed pointFixed point01 natural sciences010101 applied mathematicsRetractAdmissible space0101 mathematicsAnalysisMathematics
researchProduct

Some fixed point theorems for generalized contractive mappings in complete metric spaces

2015

We introduce new concepts of generalized contractive and generalized alpha-Suzuki type contractive mappings. Then, we obtain sufficient conditions for the existence of a fixed point of these classes of mappings on complete metric spaces and b-complete b-metric spaces. Our results extend the theorems of Ciric, Chatterjea, Kannan and Reich.

Discrete mathematicsApplied MathematicsFixed-point theoremProduct metricFixed pointComplete metric spaceConvex metric spaceMetric spaceDifferential geometryfixed pointSettore MAT/05 - Analisi Matematicacomplete metric spaceweak C-contractionGeometry and TopologyCoincidence pointMathematicsFixed Point Theory and Applications
researchProduct

A note on best approximation in 0-complete partial metric spaces

2014

We study the existence and uniqueness of best proximity points in the setting of 0-complete partial metric spaces. We get our results by showing that the generalizations, which we have to consider, are obtained from the corresponding results in metric spaces. We introduce some new concepts and consider significant theorems to support this fact.

Discrete mathematicsArticle SubjectApplied MathematicsInjective metric spacelcsh:MathematicsT-normlcsh:QA1-939Intrinsic metricConvex metric spaceUniform continuityMetric spaceFréchet spaceSettore MAT/05 - Analisi Matematica0-completeness best proximity point fixed point partial metric spaceMetric (mathematics)AnalysisMathematics
researchProduct

Common Fixed Points in a Partially Ordered Partial Metric Space

2013

In the first part of this paper, we prove some generalized versions of the result of Matthews in (Matthews, 1994) using different types of conditions in partially ordered partial metric spaces for dominated self-mappings or in partial metric spaces for self-mappings. In the second part, using our results, we deduce a characterization of partial metric 0-completeness in terms of fixed point theory. This result extends the Subrahmanyam characterization of metric completeness.

Discrete mathematicsArticle SubjectInjective metric spacelcsh:MathematicsEquivalence of metricslcsh:QA1-939Fixed points dominated self-mappings 0-completenessConvex metric spaceIntrinsic metricCombinatoricsMetric spaceSettore MAT/05 - Analisi MatematicaMetric (mathematics)Metric differentialFisher information metricMathematicsInternational Journal of Analysis
researchProduct

On a theorem of Khan in a generalized metric space

2013

Existence and uniqueness of fixed points are established for a mapping satisfying a contractive condition involving a rational expression on a generalized metric space. Several particular cases and applications as well as some illustrative examples are given.

Discrete mathematicsArticle Subjectlcsh:MathematicsInjective metric spacerational expression.Pseudometric spaceFixed pointFixed pointlcsh:QA1-939Convex metric spaceMetric spaceSettore MAT/05 - Analisi MatematicaMetric (mathematics)Uniquenessgeneralized metric spaceMetric differentialMathematics
researchProduct

Fixed point theory for multivalued generalized nonexpansive mappings

2012

A very general class of multivalued generalized nonexpansive mappings is defined. We also give some fixed point results for these mappings, and finally we compare and separate this class from the other multivalued generalized nonexpansive mappings introduced in the recent literature.

Discrete mathematicsClass (set theory)Applied MathematicsDiscrete Mathematics and CombinatoricsFixed-point theoremFixed pointCoincidence pointAnalysisMathematicsApplicable Analysis and Discrete Mathematics
researchProduct

Fixed points for multivalued mappings in b-metric spaces

2015

In 2012, Samet et al. introduced the notion ofα-ψ-contractive mapping and gave sufficient conditions for the existence of fixed points for this class of mappings. The purpose of our paper is to study the existence of fixed points for multivalued mappings, under anα-ψ-contractive condition of Ćirić type, in the setting of completeb-metric spaces. An application to integral equation is given.

Discrete mathematicsClass (set theory)Article Subjectlcsh:MathematicsApplied Mathematicsalpha-admissible multivalued mapping b-metric space fixed point integral equation.Fixed pointType (model theory)lcsh:QA1-939Integral equationMetric spaceSettore MAT/03 - GeometriaAnalysisMathematics
researchProduct

Guaranteed error bounds for a class of Picard-Lindelöf iteration methods

2013

We present a new version of the Picard-Lindelof method for ordinary dif- ¨ ferential equations (ODEs) supplied with guaranteed and explicitly computable upper bounds of an approximation error. The upper bounds are based on the Ostrowski estimates and the Banach fixed point theorem for contractive operators. The estimates derived in the paper take into account interpolation and integration errors and, therefore, provide objective information on the accuracy of computed approximations. peerReviewed

Discrete mathematicsClass (set theory)Banach fixed-point theoremOdeguaranteed error boundsPicard-Lindelöf methodsinversio-ongelmatelliptic boundary value problemsPower iterationApproximation errorOrdinary differential equationComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONApplied mathematicsa posteriori estimatesObjective informationInterpolationMathematics
researchProduct

Restricted 123-avoiding Baxter permutations and the Padovan numbers

2007

AbstractBaxter studied a particular class of permutations by considering fixed points of the composite of commuting functions. This class is called Baxter permutations. In this paper we investigate the number of 123-avoiding Baxter permutations of length n that also avoid (or contain a prescribed number of occurrences of) another certain pattern of length k. In several interesting cases the generating function depends only on k and is expressed via the generating function for the Padovan numbers.

Discrete mathematicsClass (set theory)Golomb–Dickman constantStirling numbers of the first kindApplied MathematicsPadovan numbersGenerating functionFixed pointCombinatoricsPermutationDiscrete Mathematics and CombinatoricsTree (set theory)Generating treesBaxter permutationsForbidden subsequencesMathematicsDiscrete Applied Mathematics
researchProduct

Fixed Points for Weakα-ψ-Contractions in Partial Metric Spaces

2013

Recently, Samet et al. (2012) introduced the notion ofα-ψ-contractive mappings and established some fixed point results in the setting of complete metric spaces. In this paper, we introduce the notion of weakα-ψ-contractive mappings and give fixed point results for this class of mappings in the setting of partial metric spaces. Also, we deduce fixed point results in ordered partial metric spaces. Our results extend and generalize the results of Samet et al.

Discrete mathematicsClass (set theory)Metric spacePure mathematicsApplied MathematicsInjective metric spaceMetric mapProduct metricFixed pointAnalysisMathematicsIntrinsic metricConvex metric spaceAbstract and Applied Analysis
researchProduct