Search results for "flares"

showing 10 items of 36 documents

A coronal explosion on the flare star CN Leonis

2008

We present simultaneous high-temporal and high-spectral resolution observations at optical and soft X-ray wavelengths of the nearby flare star CN Leo. During our observing campaign a major flare occurred, raising the star's instantaneous energy output by almost three orders of magnitude. The flare shows the often observed impulsive behavior, with a rapid rise and slow decay in the optical and a broad soft X-ray maximum about 200 seconds after the optical flare peak. However, in addition to this usually encountered flare phenomenology we find an extremely short (~2 sec) soft X-ray peak, which is very likely of thermal, rather than non-thermal nature and temporally coincides with the optical …

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics01 natural scienceslaw.inventionSettore FIS/05 - Astronomia E Astrofisicalaw0103 physical sciencesThermalCoronal heatingAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsAstrophysics (astro-ph)Flare starX-rays: stars stars: individual: CN Leo stars: flares stars: coronae stars: activityAstronomy and AstrophysicsX-rays; individual; CN Leo; flares; coronae; stars; activityInstantaneous energyWavelengthSpace and Planetary ScienceRapid riseCoronal planePhysics::Space PhysicsFlare
researchProduct

Evidence of active fluid seepage (AFS) in the southern region of the central Mediterranean Sea

2018

Abstract Active fluid seepage (AFS) at the seafloor is a global phenomenon associated with seafloor morphologies in different geodynamic contexts. Advanced geophysical techniques have allowed geoscientists to characterise pockmarks, mounds and flares associated with AFS. We present a range of new marine geological data acquired in the southern region of the central Mediterranean Sea (northern Sicily continental margin, northwestern Sicily Channel and offshore of the Maltese Islands), which allow us to identify AFSs. AFSs are spatially distributed as clusters, aligned or isolated at different depths, ranging from few decametres offshore of the Maltese Islands; up to 400 m offshore of norther…

010504 meteorology & atmospheric sciencesSicily ChannelSettore GEO/02 - Geologia Stratigrafica E SedimentologicaRange (biology)Settore GEO/03 - Geologia Strutturale010502 geochemistry & geophysics01 natural sciencesFluid seepagePaleontologyGas flaresMediterranean seaContinental marginElectrical and Electronic EngineeringInstrumentation0105 earth and related environmental sciencesMoundgeographyFluid seepage; Gas flares; Mound; Pockmark; Sicily Channel; Instrumentation; Electrical and Electronic Engineeringgeography.geographical_feature_categoryContinental shelfApplied MathematicsPockmarkFluid seepage; Gas flares; Mound; Pockmark; Sicily ChannelGas flareCondensed Matter PhysicsSeafloor spreadingPockmarkSubmarine pipelineGeologyChannel (geography)
researchProduct

Results from DROXO IV. EXTraS discovery of an X-ray flare from the Class I protostar candidate ISO-Oph 85

2016

X-ray emission from Young Stellar Objects (YSOs) is crucial to understand star formation. A very limited amount of X-ray results is available for the protostellar (ClassI) phase. A systematic search of transient X-ray phenomena combined with a careful evaluation of the evolutionary stage offer a widely unexplored window to our understanding of YSOs X-ray properties. Within the EXTraS project, a search for transients and variability in the whole XMM-Newton archive, we discover transient X-ray emission consistent with ISO-Oph 85, a strongly embedded YSO in the rho Ophiuchi region, not detected in previous time-averaged X-ray studies. We extract an X-ray light curve for the flare and determine…

010504 meteorology & atmospheric sciencesYoung stellar objectAstrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesflares; X-rayslaw.inventionPhotometry (optics)law0103 physical sciencesProtostarAstrophysics::Solar and Stellar Astrophysicseducation010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencescoronaePhysicseducation.field_of_studystars: protostarsStar formationactivityAstronomy and AstrophysicsLight curveAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceSpectral energy distributionAstrophysics::Earth and Planetary AstrophysicsFlare
researchProduct

A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

2013

A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two sup…

AstrofísicaEXPLOSIONSHigh energyPhotonPOINT SOURCESSUPERCONDUCTING COSMIC STRINGSGravitational waves / experimentsGravitational waves/experimentsAstrophysics01 natural scienceshigh energy neutrinosgravitational wavesgravitational waves / experiment010303 astronomy & astrophysicsQCmedia_commonLine (formation)QBPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)GAMMA-RAY BURSTSdark matter detectorsGravitational waves / experiments; Neutrino astronomy; Astronomy and Astrophysicshigh energy neutrinos[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsgravitational waves; gravitational waves / experiments; neutrino astronomy; high energy neutrinos; high energy neutrinosgravitational wavesgravitational wavesparticle physics - cosmology connectionNeutrino astronomyCOSMIC STRINGSRELATIVISTIC JETSNeutrinoAstrophysics - High Energy Astrophysical Phenomenasupersymmetry and cosmology[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]gravitational waves / experiments; neutrino astronomyTELESCOPEmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaSCIENCE RUNFOS: Physical sciencesddc:500.2GAMMA-RAY BURSTS; CORE-COLLAPSE SUPERNOVAE; SUPERCONDUCTING COSMIC STRINGS; MAGNETAR GIANT FLARES; SCIENCE RUN; RELATIVISTIC JETS; POINT SOURCES; BLACK-HOLES; LOCAL-RATE; TELESCOPEGravitational wavesGeneral Relativity and Quantum CosmologyCORE-COLLAPSE SUPERNOVAESettore FIS/05 - Astronomia e AstrofisicaCoincidentneutrino experiments0103 physical sciences010306 general physicsMAGNETAR GIANT FLARESBLACK-HOLESHigh Energy Astrophysical PhenomenaGravitational waveAstronomy[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astronomy and AstrophysicsDRIVENUniverseLIGOGIANT FLARESLOCAL-RATEFISICA APLICADALUMINOSITYRADIATIONHigh Energy Physics::Experiment[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Experiments[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating

2017

We describe a new technique for the efficient generation of high-energy ions with electromagnetic ion cyclotron waves in multi-ion plasmas. The discussed ‘three-ion’ scenarios are especially suited for strong wave absorption by a very low number of resonant ions. To observe this effect, the plasma composition has to be properly adjusted, as prescribed by theory. We demonstrate the potential of the method on the world-largest plasma magnetic confinement device, JET (Joint European Torus, Culham, UK), and the high-magnetic-field tokamak Alcator C-Mod (Cambridge, USA). The obtained results demonstrate efficient acceleration of 3He ions to high energies in dedicated hydrogen–deuterium mixtures.…

Astrophysical plasmasTokamakradio-frequency heatingCyclotronJoint European TorusPlasma heatingGeneral Physics and AstronomyFREQUENCY114 Physical sciences01 natural sciences7. Clean energyMagnetically confined plasmas010305 fluids & plasmaslaw.inventionIonPHYSICSPhysics and Astronomy (all)FUSIONMODE CONVERSIONlawPhysics::Plasma Physics0103 physical sciencesDielectric heating010306 general physicsPhysics[PHYS]Physics [physics]ta114Solar flare:Física [Àrees temàtiques de la UPC]Plasma dynamicsmulti-ion plasmasSettore FIS/01 - Fisica SperimentaleMagnetic confinement fusionPlasmaHE-3-RICH SOLAR-FLARESTècniques de plasmaJETCYCLOTRON RANGETOKAMAKPhysics::Space PhysicsAtomic physicsHE-3-RICH SOLAR-FLARES; MODE CONVERSION; CYCLOTRON RANGE; FUSION; JET; FREQUENCY; TOKAMAK; PHYSICS
researchProduct

Flaring activity on the disk of Classical T Tauri Stars: effects on disk stability

2018

Classical T Tauri Stars (CTTSs) are young stellar objects surrounded by a circumstellar disk with which they exchange mass and angular momentum through accretion. Despite this process is a crucial aspect of star formation, some issues are still not clear; in particular how the material loses angular momentum and falls into the star. CTTSs are also characterized by strong X-ray emission. Part of this X-ray emission comes from the heated plasma in the external regions of the stellar corona with temperature between 1 and 100 MK. The plasma heating is presumably due to the strong magnetic field (Feigelson and Montmerle, 1999) in the form of high energetic flares in proximity of the stellar surf…

Classical T Tauri Star Accretion MagnetoHydrodynamics FlaresClassical T Tauri StarAccretionMagnetoHydrodynamicsSettore FIS/05 - Astronomia E AstrofisicaFlares[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph]
researchProduct

Investigating the Response of Loop Plasma to Nanoflare Heating Using RADYN Simulations

2018

We present the results of 1D hydrodynamic simulations of coronal loops that are subject to nanoflares, caused by either in situ thermal heating or nonthermal electron (NTE) beams. The synthesized intensity and Doppler shifts can be directly compared with Interface Region Imaging Spectrograph (IRIS) and Atmospheric Imaging Assembly (AIA) observations of rapid variability in the transition region (TR) of coronal loops, associated with transient coronal heating. We find that NTEs with high enough low-energy cutoff (EC) deposit energy in the lower TR and chromosphere, causing blueshifts (up to approximately 20 kilometers per second) in the IRIS Si IV lines, which thermal conduction cannot repro…

Electron density010504 meteorology & atmospheric sciencesFOS: Physical sciencesAstrophysicsElectron01 natural sciencesSun: activity0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsSun: transition region010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSun: coronaAstronomy and AstrophysicsPlasmaCoronal loopAstronomy and AstrophysicThermal conductionNanoflaresIntensity (physics)Astrophysics - Solar and Stellar Astrophysicsline: profileSpace and Planetary SciencePhysics::Space PhysicsThe Astrophysical Journal
researchProduct

Modelling of asymmetric nanojets in coronal loops

2021

Context. Observations of reconnection jets in the solar corona are emerging as a possible diagnostic for studying highly elusive coronal heating. Such jets, and in particular those termed nanojets, can be observed in coronal loops and have been linked to nanoflares. However, while models successfully describe the bilateral post-reconnection magnetic slingshot effect that leads to the jets, observations reveal that nanojets are unidirectional or highly asymmetric, with only the jet travelling inward with respect to the coronal loop’s curvature being clearly observed. Aims. The aim of this work is to address the role of the curvature of the coronal loop in the generation and evolution of asym…

F300media_common.quotation_subjectFOS: Physical sciencesAstrophysicsF500magnetic fieldsCurvaturemagnetohydrodynamics (MHD)AsymmetryAstrophysics::Solar and Stellar AstrophysicsMagnetohydrodynamic driveSolar and Stellar Astrophysics (astro-ph.SR)media_commonPhysicsJet (fluid)SunAstronomy and AstrophysicsMechanicsCoronal loopNanoflaresMagnetic fieldAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceatmospherePhysics::Space PhysicsMagnetohydrodynamicscoronaSettore FIS/06 - Fisica Per Il Sistema Terra E Il Mezzo Circumterrestre
researchProduct

A framework for remission in SLE

2017

ObjectivesTreat-to-target recommendations have identified ‘remission’ as a target in systemic lupus erythematosus (SLE), but recognise that there is no universally accepted definition for this. Therefore, we initiated a process to achieve consensus on potential definitions for remission in SLE.MethodsAn international task force of 60 specialists and patient representatives participated in preparatory exercises, a face-to-face meeting and follow-up electronic voting. The level for agreement was set at 90%.ResultsThe task force agreed on eight key statements regarding remission in SLE and three principles to guide the further development of remission definitions:1. Definitions of remission wi…

Genetics and Molecular Biology (all)PediatricsAutoimmune diseasesNEPHRITIS PATIENTSDISEASE-ACTIVITYSeverity of Illness IndexBiochemistryRETROSPECTIVE ANALYSIS0302 clinical medicineQuality of lifePrednisoneAdrenal Cortex HormonesLupus Erythematosus SystemicImmunology and AllergyCHINESE PATIENTS030212 general & internal medicineSYSTEMIC-LUPUS-ERYTHEMATOSUSskin and connective tissue diseasesPREDICTORSOUTCOMESSystemic lupus erythematosusMalalties autoimmunitàriesRemission InductionSYSTEMIC-LUPUS-ERYTHEMATOSUS; DISEASE-ACTIVITY; RETROSPECTIVE ANALYSIS; INITIAL VALIDATION; NEPHRITIS PATIENTS; AMERICAN-COLLEGE; CHINESE PATIENTS; RENAL FLARES; PREDICTORS; OUTCOMESSymptom Flare UpConnective tissue diseaseManchester Institute for Collaborative Research on AgeingEstudi de casosOutcomes researchAntibodies AntinuclearDNA/immunologyImmunosuppressive Agentsmedicine.drugmedicine.medical_specialtyFarmacologiaResearchInstitutes_Networks_Beacons/MICRAConsensusImmunologyAdrenal Cortex Hormones/therapeutic useAMERICAN-COLLEGELupus Erythematosus Systemic/bloodSystemic Lupus ErythematosusGeneral Biochemistry Genetics and Molecular BiologyMaintenance Chemotherapy03 medical and health sciencesAntimalarialsRheumatologySeverity of illnessmedicineDisease Activity; Outcomes research; Systemic Lupus Erythematosus; Immunology and Allergy; Rheumatology; Immunology; Biochemistry Genetics and Molecular Biology (all)HumansDisease Activity030203 arthritis & rheumatologyPharmacologyAntibodies Antinuclear/bloodLupus erythematosusbusiness.industryTask forceConstruct validityRENAL FLARESComplement System ProteinsDNAINITIAL VALIDATIONDisease Activity; Outcomes research; Systemic Lupus Erythematosusmedicine.diseaseLupus eritematósAntimalarials/therapeutic usePhysical therapyImmunosuppressive Agents/therapeutic useComplement System Proteins/metabolismCase studiesOutcomes researchbusinessAnnals of the Rheumatic Diseases
researchProduct

Evidence of nonthermal particles in coronal loops heated impulsively by nanoflares

2014

The physical processes causing energy exchange between the Sun's hot corona and its cool lower atmosphere remain poorly understood. The chromosphere and transition region (TR) form an interface region between the surface and the corona that is highly sensitive to the coronal heating mechanism. High resolution observations with the Interface Region Imaging Spectrograph (IRIS) reveal rapid variability (about 20 to 60 seconds) of intensity and velocity on small spatial scales at the footpoints of hot dynamic coronal loops. The observations are consistent with numerical simulations of heating by beams of non-thermal electrons, which are generated in small impulsive heating events called "corona…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMultidisciplinaryFOS: Physical sciencesCoronal holeCoronal loopElectronAstrophysicsCoronaCoronal radiative losses3. Good healthNanoflaresAtmosphereSettore FIS/05 - Astronomia E AstrofisicaAstrophysics - Solar and Stellar Astrophysics13. Climate actionPhysics::Space PhysicsAstrophysics::Solar and Stellar AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaChromosphereSolar and Stellar Astrophysics (astro-ph.SR)Science
researchProduct