Search results for "folding"

showing 10 items of 330 documents

BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins.

2010

Increasing evidence indicates the existence of selective autophagy pathways, but the manner in which substrates are recognized and targeted to the autophagy system is poorly understood. One strategy is transport of a particular substrate to the aggresome, a perinuclear compartment with high autophagic activity. In this paper, we identify a new cellular pathway that uses the specificity of heat-shock protein 70 (Hsp70) to misfolded proteins as the basis for aggresome-targeting and autophagic degradation. This pathway is regulated by the stress-induced co-chaperone Bcl-2-associated athanogene 3 (BAG3), which interacts with the microtubule-motor dynein and selectively directs Hsp70 substrates …

Protein FoldingRecombinant Fusion ProteinsDyneinGreen Fluorescent ProteinsAggrephagyMice TransgenicBAG3BiochemistryMiceJUNQ and IPODChlorocebus aethiopsGeneticsAutophagyAnimalsHumansPoint MutationHSP70 Heat-Shock ProteinsMolecular BiologyAdaptor Proteins Signal TransducingSequence DeletionInclusion BodiesMotor NeuronsbiologySuperoxide DismutaseAutophagyScientific ReportsDyneinsTransport proteinCell biologyProtein TransportAggresomeHEK293 CellsSpinal CordChaperone (protein)COS Cellsbiology.proteinApoptosis Regulatory ProteinsProteasome InhibitorsEMBO reports
researchProduct

Complementation of Saccharomyces cerevisiae mutationsin genes involved in translation and protein folding (EFB1 and SSB1)with Candida albicans cloned…

2000

We have demonstrated that the expression of Candida albicans genes involved in translation and protein folding (EFB1 and SSB1) complements the phenotype of Saccharomyces cerevisiae mutants. The elongation factor 1beta (EF-1beta) is essential for growth and efb1 S. cerevisiae null mutant cells are not viable; however, viable haploid cells, carrying the disrupted chromosomal allele of the S. cerevisiae EFB1 gene and pEFB1, were isolated upon sporulation of a diploid strain which was heterozygous at the EFB1 locus and transformed with pEFB1 (a pEMBLYe23 derivative plasmid containing an 8-kb DNA fragment from the C. albicans genome which contains the EFB1 gene). This indicates that the C. albic…

Protein FoldingSaccharomyces cerevisiae ProteinsSaccharomyces cerevisiaeMutantSaccharomyces cerevisiaeMicrobiologyPeptide Elongation Factor 1Transformation GeneticGene Expression Regulation FungalHeat shock proteinCandida albicansProtein biosynthesisHSP70 Heat-Shock ProteinsCandida albicansMolecular BiologyGenebiologyGenetic Complementation TestTemperatureGeneral Medicinebiology.organism_classificationMolecular biologyComplementationProtein BiosynthesisChaperone (protein)Mutationbiology.proteinResearch in Microbiology
researchProduct

Transmembrane but not soluble helices fold inside the ribosome tunnel

2018

Integral membrane proteins are assembled into the ER membrane via a continuous ribosome-translocon channel. The hydrophobicity and thickness of the core of the membrane bilayer leads to the expectation that transmembrane (TM) segments minimize the cost of harbouring polar polypeptide backbones by adopting a regular pattern of hydrogen bonds to form α-helices before integration. Co-translational folding of nascent chains into an α-helical conformation in the ribosomal tunnel has been demonstrated previously, but the features governing this folding are not well understood. In particular, little is known about what features influence the propensity to acquire α-helical structure in the ribosom…

Protein FoldingSequence Homology Amino AcidScienceQProteïnes de membranaMembrane ProteinsMolecular Dynamics SimulationEndoplasmic ReticulumArticleProtein Structure SecondaryAnimalslcsh:QAmino Acid Sequencelcsh:ScienceHydrophobic and Hydrophilic InteractionsSignal Recognition ParticleRibosomes
researchProduct

Identification of disulphide bonds in the refolding of bovine pancreatic RNase A

1996

Background: Comprehension of the rules that govern the folding process is still far from satisfactory, though it is nevertheless clear that all the information required to define the folding is encoded in the amino acid sequence. In proteins that contain disulphide bonds, folding is associated with disulphide bond formation. Protein species with different numbers of disulphides tend to accumulate during the process; these species can be trapped in a stable form, by quenching any remaining free SH groups, and then characterized in order to identify the disulphide bonds formed. Results The refolding pathway of reduced and denatured RNase A has been studied using mass spectrometric strategies …

Protein FoldingSh groupsRNase P010402 general chemistryPeptide Mapping01 natural sciencesBiochemistryrefolding03 medical and health sciencesRNase AAnimalsDisulfidesES-MSPeptide sequencedisulphide bonds030304 developmental biology0303 health sciencesQuenching (fluorescence)ChemistryFAB-MSRibonuclease Pancreatic0104 chemical sciencesFolding (chemistry)CrystallographyMolecular MedicineCattlePancreatic RNaseDisulphide bondsCysteineFolding and Design
researchProduct

Self-assembly of biopolymeric structures below the threshold of random cross-link percolation

1996

Self-assembly of extended structures via cross-linking of individual biomolecules often occurs in solutions at concentrations well below the estimated threshold for random cross-link percolation. This requires solute-solute correlations. Here we study bovine serum albumin. Its unfolding causes the appearance of an instability region of the sol, not observed for native bovine serum albumin. As a consequence, spinodal demixing of the sol is observed. The thermodynamic phase transition corresponding to this demixing is the determinative symmetry-breaking step allowing the subsequent occurrence of (correlated) cross-linking and its progress up to the topological phase transition of gelation. Th…

Protein FoldingSpinodalPhase transitionProtein ConformationBiophysicsIn Vitro TechniquesInstabilityBiophysical PhenomenaBiopolymersDrug StabilityAnimalsTopological orderBovine serum albuminQuantitative Biology::BiomoleculesMolecular StructurebiologyChemistrySerum Albumin BovineCrystallographyCross-Linking ReagentsChemical physicsPercolationbiology.proteinThermodynamicsCattleProtein foldingSelf-assemblyGelsResearch Article
researchProduct

Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field.

2010

Coarse-grained molecular dynamics simulations offer a dramatic extension of the time-scale of simulations compared to all-atom approaches. In this article, we describe the use of the physics-based united-residue (UNRES) force field, developed in our laboratory, in protein-structure simulations. We demonstrate that this force field offers about a 4000-times extension of the simulation time scale; this feature arises both from averaging out the fast-moving degrees of freedom and reduction of the cost of energy and force calculations compared to all-atom approaches with explicit solvent. With massively parallel computers, microsecond folding simulation times of proteins containing about 1000 r…

Protein FoldingStaphylococcus aureusRotationMolecular Dynamics SimulationKinetic energyForce field (chemistry)Protein Structure SecondaryArticleMolecular dynamicsMiceProtein structureBacterial ProteinsComputational chemistryAnimalsStatistical physicsPhysical and Theoretical ChemistryMassively parallelQuantitative Biology::BiomoleculesPrincipal Component AnalysisModels StatisticalChemistryProteinsMicrosecondKineticsBundleSolventsThermodynamicsProtein foldingTranscriptional Elongation FactorsCarrier ProteinsAlgorithmsProtein BindingThe journal of physical chemistry. A
researchProduct

Wild-type Cu/Zn superoxide dismutase (SOD1) does not facilitate, but impedes the formation of protein aggregates of amyotrophic lateral sclerosis cau…

2009

Aggregation of Cu/Zn superoxide dismutase (SOD1) is a hallmark of a subset of familial amyotrophic lateral sclerosis (ALS) cases. The expression of wild-type SOD1 [SOD(hWT)] surprisingly exacerbates the phenotype of mutant SOD1 in vivo. Here we studied whether SOD1(hWT) may affect mutant SOD1 aggregation by employing fluorescence microscopy techniques combined with lifetime-based Förster resonance energy transfer (FRET). Only a very minor fraction of SOD1(hWT) was observed in aggregates induced by mutant SOD1(G37R), SOD1(G85R) or SOD1(G93C). Quite in contrast, co-expression of SOD(hWT) reduced the amount of mutant SOD1 in the aggregate fraction. Furthermore, we did not detect endogenous mou…

Protein Foldinganimal diseasesSOD1HeterodimerizationMice TransgenicEndogenyProtein aggregationCell Linelcsh:RC321-571MiceSuperoxide Dismutase-1In vivoFluorescence microscopeAnimalsHumanslcsh:Neurosciences. Biological psychiatry. NeuropsychiatrySuperoxide DismutaseChemistryWild typenutritional and metabolic diseasesAmyotrophic lateral sclerosisPhenotypeMolecular biologynervous system diseasesFörster resonance energy transferSolubilitynervous systemNeurologyFLIM-based FRETMutationProtein MultimerizationProtein aggregationNeurobiology of Disease
researchProduct

Calcium negatively regulates meprin β activity and attenuates substrate cleavage

2015

The meprin β metalloproteinase is an important enzyme in extracellular matrix turnover, inflammation, and neurodegeneration in humans and mice. Previous studies showed a diminished cleavage of certain meprin β substrates in the presence of calcium, although the mechanism was not clear. With the help of a specific fluorogenic peptide assay and the human amyloid precursor protein as substrate, we demonstrated that the influence of calcium is most likely a direct effect on human meprin β itself. Analyzing the crystal structures of pro- and mature meprin β helped to identify a cluster of negatively charged amino acids forming a potential calcium binding site. Mutation of 2 of these residues (D2…

Protein Foldingchemistry.chemical_elementCalciumEndoplasmic ReticulumBiochemistryCell LineSubstrate SpecificityAmyloid beta-Protein PrecursorChlorocebus aethiopsGeneticsAmyloid precursor proteinAnimalsHumansAmino Acid SequenceBinding siteProtein precursorMolecular BiologyCellular localizationSecretory pathwayMetalloproteinaseAmyloid beta-PeptidesBinding SitesbiologyEndoplasmic reticulumMetalloendopeptidasesCell biologyHEK293 CellschemistryCOS CellsMutationMetalloproteasesbiology.proteinCalciumAmyloid Precursor Protein SecretasesSequence AlignmentBiotechnologyThe FASEB Journal
researchProduct

Critical Structural Defects Explain Filamin A Mutations Causing Mitral Valve Dysplasia

2019

Mitral valve diseases affect approximately 3% of the population and are the most common reasons for valvular surgery because no drug-based treatments exist. Inheritable genetic mutations have now been established as the cause of mitral valve insufficiency, and four different missense mutations in the filamin A gene (FLNA) have been found in patients suffering from non-syndromic mitral valve dysplasia (MVD). The FLNA protein is expressed, in particular, in endocardial endothelia during fetal valve morphogenesis and is key in cardiac development. The FLNA-MVD causing mutations are clustered in the N-terminal region of FLNA. How the mutations in FLNA modify its structure and function, have mos…

Protein FoldingdysplasiatFilamins[SDV]Life Sciences [q-bio]PopulationProtein Tyrosine Phosphatase Non-Receptor Type 12BiophysicsMutation Missensesynnynnäiset sydänviatProtein tyrosine phosphataseBiologyMolecular Dynamics Simulationmedicine.disease_causeFilamin03 medical and health sciences0302 clinical medicinemitral valve dysplasiaMitral valvemedicineFLNAMissense mutationHumanseducationGene030304 developmental biologyGenetics0303 health sciencesMutationeducation.field_of_studyBinding SitesMitral Valve Prolapsecritical structural defectshiippaläppäfilamiinitArticles3. Good healthmedicine.anatomical_structurecardiovascular systemfilamin A mutationsgeneettiset tekijätmutaatiot030217 neurology & neurosurgeryProtein Binding
researchProduct

Targeting heat shock proteins in cancer

2010

Heat shock proteins (HSPs) HSP27, HSP70 and HSP90 are powerful chaperones. Their expression is induced in response to a wide variety of physiological and environmental insults including anti-cancer chemotherapy, thus allowing the cell to survive to lethal conditions. Different functions of HSPs have been described to account for their cytoprotective function, including their role as molecular chaperones as they play a central role in the correct folding of misfolded proteins, but also their anti-apoptotic properties. HSPs are often overexpressed in cancer cells and this constitutive expression is necessary for cancer cells' survival. HSPs may have oncogene-like functions and likewise mediat…

Protein Foldingendocrine systemCancer ResearchCell SurvivalProtein ConformationCellAntineoplastic AgentsApoptosisBreast NeoplasmsHsp27NeoplasmsHeat shock proteinmedicineAnimalsHumansHSP70 Heat-Shock ProteinsHSP90 Heat-Shock ProteinsHeat-Shock ProteinsCell ProliferationbiologyCell growthCancermedicine.diseaseHsp90Hsp70Cell biologymedicine.anatomical_structureOncologyDrug Resistance NeoplasmCancer cellbiology.proteinMolecular ChaperonesCancer Letters
researchProduct