Search results for "formal languages"
showing 10 items of 322 documents
ALGORITHMS FOR JUMBLED PATTERN MATCHING IN STRINGS
2011
The Parikh vector p(s) of a string s is defined as the vector of multiplicities of the characters. Parikh vector q occurs in s if s has a substring t with p(t)=q. We present two novel algorithms for searching for a query q in a text s. One solves the decision problem over a binary text in constant time, using a linear size index of the text. The second algorithm, for a general finite alphabet, finds all occurrences of a given Parikh vector q and has sub-linear expected time complexity; we present two variants, which both use a linear size index of the text.
The Inconsistent Labelling Problem of Stutter-Preserving Partial-Order Reduction
2020
AbstractIn model checking, partial-order reduction (POR) is an effective technique to reduce the size of the state space. Stubborn sets are an established variant of POR and have seen many applications over the past 31 years. One of the early works on stubborn sets shows that a combination of several conditions on the reduction is sufficient to preserve stutter-trace equivalence, making stubborn sets suitable for model checking of linear-time properties. In this paper, we identify a flaw in the reasoning and show with a counter-example that stutter-trace equivalence is not necessarily preserved. We propose a solution together with an updated correctness proof. Furthermore, we analyse in whi…
Pattern statistics in faro words and permutations
2021
We study the distribution and the popularity of some patterns in $k$-ary faro words, i.e. words over the alphabet $\{1, 2, \ldots, k\}$ obtained by interlacing the letters of two nondecreasing words of lengths differing by at most one. We present a bijection between these words and dispersed Dyck paths (i.e. Motzkin paths with all level steps on the $x$-axis) with a given number of peaks. We show how the bijection maps statistics of consecutive patterns of faro words into linear combinations of other pattern statistics on paths. Then, we deduce enumerative results by providing multivariate generating functions for the distribution and the popularity of patterns of length at most three. Fina…
Classical automata on promise problems
2015
Promise problems were mainly studied in quantum automata theory. Here we focus on state complexity of classical automata for promise problems. First, it was known that there is a family of unary promise problems solvable by quantum automata by using a single qubit, but the number of states required by corresponding one-way deterministic automata cannot be bounded by a constant. For this family, we show that even two-way nondeterminism does not help to save a single state. By comparing this with the corresponding state complexity of alternating machines, we then get a tight exponential gap between two-way nondeterministic and one-way alternating automata solving unary promise problems. Secon…
On prefix normal words and prefix normal forms
2016
A $1$-prefix normal word is a binary word with the property that no factor has more $1$s than the prefix of the same length; a $0$-prefix normal word is defined analogously. These words arise in the context of indexed binary jumbled pattern matching, where the aim is to decide whether a word has a factor with a given number of $1$s and $0$s (a given Parikh vector). Each binary word has an associated set of Parikh vectors of the factors of the word. Using prefix normal words, we provide a characterization of the equivalence class of binary words having the same set of Parikh vectors of their factors. We prove that the language of prefix normal words is not context-free and is strictly contai…
Primitive sets of words
2020
Given a (finite or infinite) subset $X$ of the free monoid $A^*$ over a finite alphabet $A$, the rank of $X$ is the minimal cardinality of a set $F$ such that $X \subseteq F^*$. We say that a submonoid $M$ generated by $k$ elements of $A^*$ is {\em $k$-maximal} if there does not exist another submonoid generated by at most $k$ words containing $M$. We call a set $X \subseteq A^*$ {\em primitive} if it is the basis of a $|X|$-maximal submonoid. This definition encompasses the notion of primitive word -- in fact, $\{w\}$ is a primitive set if and only if $w$ is a primitive word. By definition, for any set $X$, there exists a primitive set $Y$ such that $X \subseteq Y^*$. We therefore call $Y$…
Quantum Pushdown Automata
2001
Quantum finite automata, as well as quantum pushdown automata (QPA) were first introduced by C. Moore and J. P. Crutchfield. In this paper we introduce the notion of QPA in a non-equivalent way, including unitarity criteria, by using the definition of quantum finite automata of Kondacs and Watrous. It is established that the unitarity criteria of QPA are not equivalent to the corresponding unitarity criteria of quantum Turing machines. We show that QPA can recognize every regular language. Finally we present some simple languages recognized by QPA, not recognizable by deterministic pushdown automata.
Implications of quantum automata for contextuality
2014
We construct zero-error quantum finite automata (QFAs) for promise problems which cannot be solved by bounded-error probabilistic finite automata (PFAs). Here is a summary of our results: - There is a promise problem solvable by an exact two-way QFA in exponential expected time, but not by any bounded-error sublogarithmic space probabilistic Turing machine (PTM). - There is a promise problem solvable by an exact two-way QFA in quadratic expected time, but not by any bounded-error $ o(\log \log n) $-space PTMs in polynomial expected time. The same problem can be solvable by a one-way Las Vegas (or exact two-way) QFA with quantum head in linear (expected) time. - There is a promise problem so…
Quantum finite multitape automata
1999
Quantum finite automata were introduced by C.Moore, J.P. Crutchfield, and by A.Kondacs and J.Watrous. This notion is not a generalization of the deterministic finite automata. Moreover, it was proved that not all regular languages can be recognized by quantum finite automata. A.Ambainis and R.Freivalds proved that for some languages quantum finite automata may be exponentially more concise rather than both deterministic and probabilistic finite automata. In this paper we introduce the notion of quantum finite multitape automata and prove that there is a language recognized by a quantum finite automaton but not by a deterministic or probabilistic finite automata. This is the first result on …
The minimal probabilistic and quantum finite automata recognizing uncountably many languages with fixed cutpoints
2019
Discrete Mathematics & Theoretical Computer Science ; vol. 22 no. 1 ; Automata, Logic and Semantics ; 1365-8050