Search results for "frameworks"

showing 10 items of 120 documents

Stimuli-responsive hybrid materials: breathing in magnetic layered double hydroxides induced by a thermoresponsive molecule

2014

[EN] A hybrid magnetic multilayer material of micrometric size, with highly crystalline hexagonal crystals consisting of CoAl-LDH ferromagnetic layers intercalated with thermoresponsive 4-(4-anilinophenylazo)benzenesulfonate (AO5) molecules diluted (ratio 9 : 1) with a flexible sodium dodecylsulphate (SDS) surfactant has been obtained. The resulting material exhibits thermochromism attributable to the isomerization between the azo (prevalent at room temperature) and the hydrazone (favoured at higher temperatures) tautomers, leading to a thermomechanical response. In fact, these crystals exhibited thermally induced motion triggering remarkable changes in the crystal morphology and volume. In…

Magnetic couplingsMagnetismLayered double hydroxidesFerromagnetic layersINTERCALATION COMPOUNDengineering.materialThermotropismNI-ALQuantitative Biology::Subcellular ProcessesCondensed Matter::Materials ScienceMETAL-ORGANIC FRAMEWORKSchemistry.chemical_compoundCrystallinityQUIMICA ORGANICANuclear magnetic resonanceCrystal morphologiesPHOTOISOMERIZATIONQUIMICA ANALITICANANOPARTICLESPhysics::Chemical PhysicsAZOBENZENEPhysics::Atmospheric and Oceanic PhysicsThermochromismPRUSSIAN BLUEChemistryMagnetismLayered double hydroxidesFísicaQuímicaGeneral ChemistryMoleculesequipment and suppliesChemistryMagnetic multilayersCrystallographyAzobenzeneFerromagnetismHYDROTALCITEengineeringTHERMAL-EXPANSIONHybrid materialhuman activitiesCOORDINATION POLYMERSChemical Science
researchProduct

Effect of modulator connectivity on promoting defectivity in titanium–organic frameworks

2020

The recognition of defect chemistry as a true synthetic tool for targeted creation of defects and controllable performance remains limited by the pool of frameworks explored. The value of defect engineering in controlling the properties of defective frameworks has been beautifully exemplified and largely demonstrated with UiO-type materials based on Zr(iv) nodes. However, titanium–organic frameworks remain largely unexplored in this context arguably due to the complex chemistry in solution of Ti(iv) and the difficulties in growing crystalline solids. We report a systematic study on the ability of mono- and dicarboxylic modulators (benzoic and isophthalic acid) to promote defect creation in …

Materials science010405 organic chemistryUNESCO::QUÍMICADefect engineeringchemistry.chemical_elementContext (language use)General ChemistryMetal-Organic Frameworks Defects Titanium Coordination modulation010402 general chemistry:QUÍMICA [UNESCO]01 natural sciencesCombinatorial chemistry3. Good health0104 chemical sciencesIsophthalic acidChemistrychemistry.chemical_compoundchemistryComplex chemistrytitaniummetal-organic frameworksLinkerdefectsTitaniumChemical Science
researchProduct

Synthesis of Densely Packaged, Ultrasmall Pt02Clusters within a Thioether-Functionalized MOF: Catalytic Activity in Industrial Reactions at Low Tempe…

2018

The gram-scale synthesis, stabilization, and characterization of well-defined ultrasmall subnanometric catalytic clusters on solids is a challenge. The chemical synthesis and X-ray snapshots of Pt02 clusters, homogenously distributed and densely packaged within the channels of a metal-organic framework, is presented. This hybrid material catalyzes efficiently, and even more importantly from an economic and environmental viewpoint, at low temperature (25 to 140 °C), energetically costly industrial reactions in the gas phase such as HCN production, CO2 methanation, and alkene hydrogenations. These results open the way for the design of precisely defined catalytically active ultrasmall metal c…

Materials science02 engineering and technologyHeterogeneous catalysis010402 general chemistryChemical synthesis01 natural sciencesCatalysisCatalysisCatalysimetal–organic frameworkchemistry.chemical_compoundmetal–organic frameworksThioetherMethanationheterogeneous catalysis; metal clusters; metal–organic frameworks; platinum; structural flexibility; Catalysis; Chemistry (all)platinumchemistry.chemical_classificationAlkene010405 organic chemistrystructural flexibilityChemistry (all)General ChemistryGeneral Medicinemetal cluster021001 nanoscience & nanotechnology0104 chemical sciencesheterogeneous catalysismetal clusterschemistryChemical engineeringheterogeneous catalysiMetal-organic framework0210 nano-technologyHybrid material
researchProduct

Studies on atomic layer deposition of MOF-5 thin films

2013

International audience; Deposition of MOF-5 thin films from vapor phase by atomic layer deposition (ALD) was studied at 225-350 degrees C. Zinc acetate (ZnAc2) and 1,4-benzenedicarboxylic acid (1,4-BDC) were used as the precursors. The resulting films were characterized by UV-Vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), optical microscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), time-of-flight elastic recoil detection analysis (TOF-ERDA), isopropanol adsorption tests, and nanoindentation. It was found out that the as-deposited films were amorphous but crystallized in humid conditions at room temperature. The crystalline films h…

Materials scienceAnalytical chemistry02 engineering and technologyChemical vapor deposition010402 general chemistry01 natural sciencesAtomic layer depositionGeneral Materials ScienceThin filmFourier transform infrared spectroscopyta116ta114General Chemistry[CHIM.MATE]Chemical Sciences/Material chemistryNanoindentationMetal-organic frameworks021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesAmorphous solidElastic recoil detectionCarbon filmMOF-5Mechanics of MaterialsALDHybrid materials0210 nano-technology
researchProduct

Metal-organic framework-activated carbon composite materials for the removal of ammonia from contaminated airstreams

2019

L.N.M and R.E.M wish to acknowledge the financial support from the EPSRC industrial CASE award (grant EP/N50936X/1). A.T and G.B would like to thank the financial support from the Fondo per il finanziamento delle attività base di ricerca (grant PJ-RIC-FFABR_2017). Metal-organic frameworks (MOFs) are a class of porous materials that show promise in the removal of Toxic Industrial Chemicals (TICs) from contaminated airstreams, though their development for this application has so far been hindered by issues of water stability and the wide availability and low cost of traditionally used activated carbons. Here a series of three MOF-activated carbon composite materials with different MOF to carb…

Materials scienceChemistry(all)Activated carbonNDASchemistry.chemical_elementgas adsorption010402 general chemistry01 natural sciencesCatalysisCatalysisAmmoniachemistry.chemical_compoundmedicineactivated carbonporous materialPorous materialsQDComposite materialwater stability010405 organic chemistrybusiness.industryGeneral ChemistryChemical industryWater stabilityContaminationmetal-organic frameworkMetal-organic frameworksQD Chemistry0104 chemical sciencesGas adsorptionchemistryMetal-organic frameworkbusinessPorous mediumCarbonActivated carbonmedicine.drug
researchProduct

Origin of the Chemiresistive Response of Ultrathin Films of Conductive Metal–Organic Frameworks

2018

Conductive metal-organic frameworks are opening new perspectives for the use of these porous materials for applications traditionally limited to more classical inorganic materials, such as their integration into electronic devices. This has enabled the development of chemiresistive sensors capable of transducing the presence of specific guests into an electrical response with good selectivity and sensitivity. By combining experimental data with computational modelling, a possible origin for the underlying mechanism of this phenomenon in ultrathin films (ca. 30 nm) of Cu-CAT-1 is described. ispartof: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION vol:57 issue:46 pages:15086-15090 ispartof: location…

Materials scienceChemistry MultidisciplinaryQuímica organometàl·licaNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesCatalysischemiresistive sensingmolecular devicesELECTRICAL-CONDUCTIVITYultrathin filmsElectronicsmetal-organic frameworksElectrical conductorScience & Technologyelectrical conductivity010405 organic chemistryGeneral ChemistryConductivitat elèctricaGeneral Medicine021001 nanoscience & nanotechnology0104 chemical sciencesChemistryPhysical SciencesMetal-organic frameworkInorganic materials0210 nano-technologyPorous mediumAngewandte Chemie
researchProduct

A [Cr2Ni] coordination polymer: slow relaxation of magnetization in quasi-one-dimensional ferromagnetic chains

2018

The reaction of [Cr3IIIO(OAc)6(H2O)3]NO3·AcOH with 2-hydroxynaphthaldehyde, 2-amino-isobutyric acid and NiCl2·6H2O in MeOH, under basic and solvothermal conditions, led to the formation of the quasi-1D coordination polymer {[CrIII2NiII(L)4(MeOH)2]}n (where L = the dianion of the Schiff base between 2-hydroxynaphthaldehyde and 2-amino-isobutyric acid), which behaves as a ferromagnetic chain, displaying slow relaxation of magnetization.

Materials scienceCoordination polymer010402 general chemistry01 natural sciencesCatalysisMETAL-ORGANIC FRAMEWORKSchemistry.chemical_compoundMagnetizationChain (algebraic topology)SYSTEMSNANO-MAGNETSABSORPTIONMaterials ChemistryFIELDANTIFERROMAGNETSANISOTROPYMOSSBAUER RELAXATIONSchiff base010405 organic chemistryNONLINEAR EXCITATIONSMetals and AlloysGeneral ChemistrySINGLE-MOLECULE MAGNETS0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographychemistryFerromagnetismCeramics and CompositesRelaxation (physics)Quasi one dimensional
researchProduct

Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework

2019

The design of metal–organic frameworks (MOFs) incorporating electroactive guest molecules in the pores has become a subject of great interest in order to obtain additional electrical functionalities within the framework while maintaining porosity. Understanding the charge-transfer (CT) process between the framework and the guest molecules is a crucial step towards the design of new electroactive MOFs. Herein, we present the encapsulation of fullerenes (C60) in a mesoporous tetrathiafulvalene (TTF)-based MOF. The CT process between the electron-acceptor C60 guest and the electron-donor TTF ligand is studied in detail by means of different spectroscopic techniques and density functional theor…

Materials scienceFullerenemetal–organic frameworks (MOFs)General Physics and Astronomy010402 general chemistrylcsh:Chemical technology01 natural scienceslcsh:TechnologyFull Research Paperchemistry.chemical_compoundMoleculeNanotechnologyGeneral Materials Sciencelcsh:TP1-1185Electrical and Electronic Engineeringdonor–acceptorPorositylcsh:ScienceMaterials010405 organic chemistrylcsh:TNanotecnologiafullerenecharge transferSorptionlcsh:QC1-9990104 chemical sciencestetrathiafulvalene (TTF)NanoscienceChemical engineeringchemistryDensity functional theoryMetal-organic frameworklcsh:QMesoporous materialTetrathiafulvalenelcsh:PhysicsBeilstein Journal of Nanotechnology
researchProduct

Surface Functionalization of Metal–Organic Framework Crystals with Catechol Coatings for Enhanced Moisture Tolerance

2021

Robust catechol coatings for enhanced moisture tolerance were produced in one step by direct reaction of Hong Kong University of Science and Technology (HKUST) with synthetic catechols. We ascribe the rapid formation of homogeneous coatings around the metal–organic framework particles to the biomimetic catalytic activity of Cu(II) dimers in the external surface of the crystals. Use of fluorinated catechols results in hydrophobic, permeable coatings that protect HKUST from water degradation while retaining close to 100% of its original sorption capacity.

Materials scienceInorganic chemistry02 engineering and technologyMetal−organic frameworks010402 general chemistryHydrophobic coating01 natural sciencesCatalysischemistry.chemical_compoundGeneral Materials ScienceMaterialsCatecholase biomimeticsCatecholMoistureSorptionQuímicaWater stability021001 nanoscience & nanotechnologySuperhydrophobic coating0104 chemical scienceschemistrySurface functionalizationSurface modificationMetal-organic framework0210 nano-technologyScience technology and societyACS Applied Materials & Interfaces
researchProduct

MOF-Mediated Synthesis of Supported Fe-Doped Pd Nanoparticles under Mild Conditions for Magnetically Recoverable Catalysis**

2020

Metal–organic framework (MOF)-driven synthesis is considered as a promising alternative for the development of new catalytic materials with well-designed active sites. This synthetic approach is used here to gradually transform a new bimetallic MOF, with Pd and Fe as the metal components, by the in situ generation of aniline under mild conditions. This methodology results in a compositionally homogeneous nanocomposite formed by Fe-doped Pd nanoparticles that, in turn, are supported on iron oxide-doped carbon. The nanocomposite has been fully characterized by several techniques such as IR and Raman spectroscopy, TEM, XPS, and XAS. The performance of this nanocomposite as an heterogeneous cat…

Materials scienceIron09.- Desarrollar infraestructuras resilientes promover la industrialización inclusiva y sostenible y fomentar la innovaciónNanoparticle010402 general chemistryHeterogeneous catalysis01 natural sciences7. Clean energyCatalysisCatalysisNitrobenzenechemistry.chemical_compoundLight sourceAnilineCatàlisiQUIMICA ANALITICAmedia_common.cataloged_instanceUser FacilityEuropean unionBimetallic stripmedia_commonX-ray absorption spectroscopyNanocomposite010405 organic chemistryOrganic ChemistryGeneral ChemistryMetal-organic frameworks0104 chemical sciences12.- Garantizar las pautas de consumo y de producción sostenibleschemistryChemical engineeringFe dopedPd nanoparticlesNanoparticlesMaterials nanoestructuratsNational laboratoryHumanitiesPalladium
researchProduct