Search results for "front-end electronics"
showing 6 items of 16 documents
The COMPASS Setup for Physics with Hadron Beams
2015
The main characteristics of the COMPASS experimental setup for physics with hadron beams are described. This setup was designed to perform exclusive measurements of processes with several charged and/or neutral particles in the final state. Making use of a large part of the apparatus that was previously built for spin structure studies with a muon beam, it also features a new target system as well as new or upgraded detectors. The hadron setup is able to operate at the high incident hadron flux available at CERN. It is characterised by large angular and momentum coverages, large and nearly flat acceptances, and good two and three-particle mass resolutions. In 2008 and 2009 it was successful…
Particle identification with the fast COMPASS RICH-1 detector
2009
International audience; A new photon detection system for the COMPASS RICH-1 detector has been designed and installed. In the central region, the project is based on multi-anode photo-multiplier technology accompanied by charge sensitive, high resolution and dead-time free time digitization. In the outer area, only the readout electronics for the existing photon detectors has been replaced. Details on the detector upgrade and its performance are presented.
MALTA: an asynchronous readout CMOS monolithic pixel detector for the ATLAS High-Luminosity upgrade
2019
The ATLAS collaboration is currently investigating CMOS monolithic pixel sensors for the outermost layer of the upgrade of its Inner Tracker (ITk). For this application, two large scale prototypes featuring small collection electrode have been produced in a radiation-hard process modification of a standard 0.18 μm CMOS imaging technology: the MALTA, with a novel asynchronous readout, and the TJ MONOPIX, based on the well established "column-drain" architecture. The MALTA chip is the first full-scale prototype suitable for the development of a monolithic module for the ITk. It features a fast and low-power front-end, an architecture designed to cope with an hit-rate up to 2 MHz/mm2 without c…
The COMPASS experiment at CERN
2007
The COMPASS experiment makes use of the CERN SPS high-intensitymuon and hadron beams for the investigation of the nucleon spin structure and the spectroscopy of hadrons. One or more outgoing particles are detected in coincidence with the incoming muon or hadron. A large polarized target inside a superconducting solenoid is used for the measurements with the muon beam. Outgoing particles are detected by a two-stage, large angle and large momentum range spectrometer. The setup is built using several types of tracking detectors, according to the expected incident rate, required space resolution and the solid angle to be covered. Particle identification is achieved using a RICH counter and both…
Front-End Electronics for the KAOS Spectrometer at MAMI
2009
A new front-end electronics system has been developed for the electron arm tracking detectors in the Kaos spectrometer at the Mainz microtron MAMI. The signals of multi-anode photomultipliers are collected by 96-channel front-end boards, digitized by double-threshold discriminators and the signal time is picked up by F1 TDC chips. The system was designed to process more than 4,000 channels and to cope with the high electron flux in the spectrometer and the high count rate requirement of the detectors. A subset of 288 channels was installed and successfully used in the 2008 data taking period of the Kaos spectrometer.
Mini-MALTA: Radiation hard pixel designs for small-electrode monolithic CMOS sensors for the High Luminosity LHC
2020
Journal of Instrumentation 15(02), P02005 (2020). doi:10.1088/1748-0221/15/02/P02005