Search results for "gall"

showing 10 items of 903 documents

Solar UV-B radiation affects leaf quality and insect herbivory in the southern beech tree Nothofagus antarctica

2004

We examined the effects of solar ultraviolet-B (UV-B) radiation on plant-insect interactions in Tierra del Fuego (55°S), Argentina, an area strongly affected by ozone depletion because of its proximity to Antarctica. Solar UV-B under Nothofagus antarctica branches was manipulated using a polyester plastic film to attenuate UV-B (uvb-) and an Aclar film to provide near-ambient UV-B (uvb+). The plastic films were placed on both north-facing (i.e., high solar radiation in the Southern Hemisphere) and south-facing branches. Insects consumed 40% less leaf area from north- than from south-facing branches, and at least 30% less area from uvb+ branches than from uvb-branches. The reduced herbivory …

EcophysiologyInsectaUltraviolet RaysPlastic filmAntarctic RegionsTreesGALLIC ACIDCiencias Biológicaschemistry.chemical_compoundBotanyAnimalsOZONE DEPLETIONBeechEcosystemEcology Evolution Behavior and SystematicsNothofagusbiologyFLAVONOIDSbiology.organism_classificationOzone depletionFagaceaePlant LeavesAglyconechemistryLarvaSunlightNothofagus antarcticaOtros Tópicos BiológicosHERBIVORYNOTHOFAGUSCIENCIAS NATURALES Y EXACTAS
researchProduct

Residual strain effects on the two-dimensional electron gas concentration of AlGaN/GaN heterostructures

2001

Ga-face AlGaN/GaN heterostructures with different sheet carrier concentrations have been studied by photoluminescence and Raman spectroscopy. Compared to bulk GaN, an energy shift of the excitonic emission lines towards higher energies was observed, indicating the presence of residual compressive strain in the GaN layer. This strain was confirmed by the shift of the E2 Raman line, from which biaxial compressive stresses ranging between 0.34 and 1.7 GPa were deduced. The spontaneous and piezoelectric polarizations for each layer of the heterostructures have been also calculated. The analysis of these quantities clarified the influence of the residual stress on the sheet electron concentratio…

Electron densityTwo-dimensional electron gasMaterials sciencePhotoluminescenceIII-V semiconductorsAluminium compounds ; Gallium compounds ; III-V semiconductors ; Wide band gap semiconductors ; Semiconductor heterojunctions ; Two-dimensional electron gas ; Electron density ; Internal stresses ; Photoluminescence ; Raman spectra ; Excitons ; Interface states ; Piezoelectric semiconductors ; Dielectric polarisationExcitonAnalytical chemistryGeneral Physics and AstronomyDielectric polarisationMolecular physicsCondensed Matter::Materials Sciencesymbols.namesakeResidual stress:FÍSICA [UNESCO]Emission spectrumPiezoelectric semiconductorsPhotoluminescenceAluminium compoundsUNESCO::FÍSICAWide-bandgap semiconductorGallium compoundsHeterojunctionInterface statesWide band gap semiconductorssymbolsExcitonsRaman spectraSemiconductor heterojunctionsRaman spectroscopyInternal stressesElectron density
researchProduct

Tin-related double acceptors in gallium selenide single crystals

1998

Gallium selenide single crystals doped with different amounts of tin are studied through resistivity and Hall effect measurements in the temperature range from 30 to 700 K. At low doping concentration tin is shown to behave as a double acceptor impurity in gallium selenide with ionization energies of 155 and 310 meV. At higher doping concentration tin also introduces deep donor levels, but the material remains p-type in the whole studied range of tin doping concentrations. The deep character of donors in gallium selenide is discussed by comparison of its conduction band structure to that of indium selenide under pressure. The double acceptor center is proposed to be a tin atom in interlayer…

Electron mobilityHole MobilityAnalytical chemistryGeneral Physics and Astronomychemistry.chemical_elementMineralogyDeep LevelsCondensed Matter::Materials Sciencechemistry.chemical_compound:FÍSICA [UNESCO]Condensed Matter::SuperconductivitySelenideNuclear ExperimentConduction BandsGallium Compounds ; III-VI Semiconductors ; Tin ; Impurity States ; Deep Levels ; Electrical Resistivity ; Hall Effect ; Hole Mobility ; Conduction BandsImpurity StatesElectrical ResistivityHall EffectIII-VI SemiconductorsPhonon scatteringCarrier scatteringDopingUNESCO::FÍSICAAcceptorchemistryTinGallium CompoundsTinIndiumJournal of Applied Physics
researchProduct

Cathodoluminescence study of undoped GaN films: Experiment and calculation

2009

Abstract In this paper, we report the theoretical and experimental results of cathodoluminescence (CL) from GaN layers grown at 800 °C by metal organic vapor phase epitaxy (MOVPE) on silicon substrate. The CL spectra recorded at room temperature reveal the near band-edge emission at 3.35–3.42 eV and a broad yellow luminescence at 2.2 eV. The CL depth analysis at constant power excitation shows inhomogeneous CL distribution in depth of these emissions as the electron beam increases from 3 to 25 keV. There appears a blue shift of the CL band-edge peaks with increasing sample depth. This behavior is explained by a change of the fundamental band gap due to residual strain and the local temperat…

Electron mobilityMaterials scienceBand gapCathodoluminescenceGallium nitrideCondensed Matter PhysicsMolecular physicsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsBlueshiftCondensed Matter::Materials Sciencechemistry.chemical_compoundchemistryMetalorganic vapour phase epitaxyAtomic physicsAbsorption (electromagnetic radiation)LuminescencePhysica E: Low-dimensional Systems and Nanostructures
researchProduct

Acoustic manipulation of electron-hole pairs in GaAs at room temperature

2004

We demonstrate the optically detected long-range (>100 μm) ambipolar transport of photogenerated electrons and holes at room temperature by surface acoustic waves (SAWs) in (In,Ga)As-based quantum well structures coupled to an optical microcavity. We also show the control of the propagation direction of the carriers by a switch composed of orthogonal SAW beams, which can be used as a basic control gate for information processing based on ambipolar transport.

Electron mobilityMaterials sciencePhysics and Astronomy (miscellaneous)Ambipolar diffusionbusiness.industryCarrier generation and recombinationAcoustic waveElectronEnginyeria acústicaCiència dels materialsOptical microcavitylaw.inventionGallium arsenidechemistry.chemical_compoundchemistrylawOptoelectronicsbusinessQuantum well
researchProduct

Transport properties of nitrogen doped p‐gallium selenide single crystals

1996

Nitrogen doped gallium selenide single crystals are studied through Hall effect and photoluminescence measurements in the temperature ranges from 150 to 700 K and from 30 to 45 K, respectively. The doping effect of nitrogen is established and room temperature resistivities as low as 20 Ω cm are measured. The temperature dependence of the hole concentration can be explained through a single acceptor‐single donor model, the acceptor ionization energy being 210 meV, with a very low compensation rate. The high quality of nitrogen doped GaSe single crystals is confirmed by photoluminescence spectra exhibiting only exciton related peaks. Two phonon scattering mechanisms must be considered in orde…

Electron mobilityOptical PhononsPhotoluminescenceMaterials scienceNitrogen AdditionsPhononExcitonGallium SelenidesHole MobilityGeneral Physics and AstronomyMonocrystalsCondensed Matter::Materials ScienceP−Type Conductors:FÍSICA [UNESCO]Condensed Matter::SuperconductivityDoped MaterialsHall EffectCondensed matter physicsPhonon scatteringScatteringDopingTemperature DependenceUNESCO::FÍSICAAcceptorDoped Materials ; Excitons ; Gallium Selenides ; Hall Effect ; Hole Mobility ; Monocrystals ; Nitrogen Additions ; Optical Phonons ; P−Type Conductors ; Temperature Dependence ; Transport ProcessesTransport ProcessesExcitons
researchProduct

Electric control of the spin Hall effect by intervalley transitions

2013

Controlling spin-related material properties by electronic means is a key step towards future spintronic technologies. The spin Hall effect (SHE) has become increasingly important for generating, detecting and using spin currents, but its strength-quantified in terms of the SHE angle-is ultimately fixed by the magnitude of the spin-orbit coupling (SOC) present for any given material system. However, if the electrons generating the SHE can be controlled by populating different areas (valleys) of the electronic structure with different SOC characteristic the SHE angle can be tuned directly within a single sample. Here we report the manipulation of the SHE in bulk GaAs at room temperature by m…

Electronic structureSpin currentsSpin Hall effectElectronElectronic structureCrystal symmetrySpin-polarized electronsElectron populationGallium arsenideQuantum mechanicsGeneral Materials ScienceSemiconducting galliumStrength of materials0912 Materials EngineeringRoom temperatureSpin-½Intervalley transitionPhysicsCouplingElectromotive forceCondensed matter physicsSpintronicsMechanical EngineeringMaterial systemsGeneral ChemistryCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsElectric controlHeavy metalsMechanics of MaterialsSpin Hall effectSpin-orbit couplingsMaterial propertiesNature Materials
researchProduct

Above-bandgap ordinary optical properties of GaSe single crystal

2009

We report above-bandgap ordinary optical properties of ε-phase GaSe single crystal. Reference-quality pseudodielectric function 〈ε(E)〉 = 〈ε1(E)〉+i〈ε2(E)〉 and pseudorefractive index 〈N(E)〉 = 〈n(E)〉+i〈k(E)〉 spectra were measured by spectroscopic ellipsometry from 0.73 to 6.45 eV at room temperature for the light polarization perpendicular to the optic axis (math⊥math). The 〈ε〉 spectrum exhibited several interband-transition critical-point structures. Analysis of second-energy derivatives calculated numerically from the measured data yielded the critical-point energy values. Carmen.Martinez-Tomas@uv.es

EllipsometryCondensed matter physicsChemistryBand gapUNESCO::FÍSICAGallium compoundsRefractive indexCritical points ; Dielectric function ; Ellipsometry ; Energy gap ; Gallium compounds ; III-VI semiconductors ; Refractive indexIII-VI semiconductorsPhysics::OpticsGeneral Physics and AstronomyCritical pointsDielectric functionPolarization (waves)Spectral lineEnergy gapOptical axis:FÍSICA [UNESCO]EllipsometryPerpendicularRefractive indexSingle crystalJournal of Applied Physics
researchProduct

Differente ruolo delle subpopolazioni degli emociti di Mytilus galloprovincialis nella clearance batterica

2008

Emociti Mytilus galloprovincialis.
researchProduct

COMPUTED TOMOGRAPHY TO PREDICT HARDNESS OF BILEDUCT STONES BEFORE ENDOSCOPIC LITHOTRIPSY

1984

Endoscopesmedicine.diagnostic_testbusiness.industrymedicine.medical_treatmentComputed tomographyGallstonesGeneral MedicineLithotripsyHardnessX ray computedmedicineHumansTomographyTomography X-Ray ComputedbusinessNuclear medicineThe Lancet
researchProduct