Search results for "gamma rays"

showing 10 items of 108 documents

Differential gene expression in p53-mediated G(1) arrest of human fibroblasts after gamma-irradiation or N-phosphoacetyl-L-aspartate treatment.

2000

In human fibroblasts, N:-phosphoacetyl-L-aspartate (PALA) and gamma-radiation induce reversible and irreversible p53-mediated G(1) cell cycle arrest, respectively. By coupling the premature chromosome condensation technique to fluorescence in situ hybridization, we found no evidence of DNA damage after PALA treatment. We used representational difference analysis (cDNA-RDA) to study changes in gene expression after PALA treatment and gamma-radiation in normal human fibroblasts. The mammary-derived growth inhibitor (MDGI) gene was expressed in PALA-treated cells. Ectopic MDGI expression arrested PALA-treated but not irradiated RKO cells. Expression of an antisense RNA against MDGI resulted in…

Phosphonoacetic AcidCancer ResearchTumor suppressor geneIn situ hybridizationBiologyFatty Acid-Binding ProteinsCell LineGene expressionHumansGeneIn Situ Hybridization FluorescenceMetaphaseSkinExpressed Sequence TagsExpressed sequence tagAspartic AcidCell CycleG1 PhaseChromosome MappingG0 phaseGeneral MedicineCell cycleFibroblastsMolecular biologyGrowth InhibitorsGene Expression RegulationGamma RaysKaryotypingRepresentational difference analysisTumor Suppressor Protein p53Carrier ProteinsCell Adhesion MoleculesFatty Acid Binding Protein 3Chromosomes Human Pair 7Carcinogenesis
researchProduct

Modification of Structural and Luminescence Properties of Graphene Quantum Dots by Gamma Irradiation and Their Application in a Photodynamic Therapy

2015

Herein, the ability of gamma irradiation to enhance the photoluminescence properties of graphene quantum dots (GQDs) was investigated. Different doses of gamma-irradiation were used on GQDs to examine the way in which their structure and optical properties can be affected. The photoluminescence quantum yield was increased six times for the GQDs irradiated with high doses compared to the nonirradiated material. Both photoluminescence lifetime and values of optical band gap were increased with the dose of applied gamma irradiation. In addition, the exploitation of the gamma-irradiated GQDs as photosensitizers was examined by monitoring the production of singlet oxygen under UV illumination. T…

PhotoluminescenceMaterials scienceLuminescenceBand gapQuantum yieldgraphene quantum dot02 engineering and technology010402 general chemistryPhotochemistryMicroscopy Atomic Force01 natural scienceslaw.inventionchemistry.chemical_compoundlawQuantum DotsSpectroscopy Fourier Transform InfraredGeneral Materials ScienceIrradiationParticle SizePhotosensitizing Agentsgraphene quantum dotsSinglet OxygenGraphenebusiness.industrySinglet oxygenElectron Spin Resonance Spectroscopy021001 nanoscience & nanotechnologygamma irradiation0104 chemical scienceschemistryPhotochemotherapyphotodynamic therapyQuantum dotGamma Raysgamma irradiation; graphene quantum dots; photodynamic therapy; photoluminescence; quantum yieldOptoelectronicsGraphiteSpectrophotometry Ultravioletphotoluminescence0210 nano-technologyLuminescencebusinessquantum yield
researchProduct

Twofold coordinated Ge defects induced by gamma-ray irradiation in Ge-doped SiO2

2008

We report an experimental study by photoluminescence, optical absorption and Electron Paramagnetic Resonance measurements on the effects of exposure of Ge-doped amorphous SiO2 to gamma ray radiation at room temperature. We have evidenced that irradiation at doses of the order of 1 MGy is able to generate Ge-related defects, recognizable from their optical properties as twofold coordinated Ge centers. Until now, such centers, responsible for photosensitivity of Ge-doped SiO2, have been induced only in synthesis procedures of materials. The found result evidences a role played by gamma radiation in generating photosensitive defects and could furnish a novel basis for photosensitive pattern wr…

PhotoluminescenceMaterials sciencesistemi amorfi difetti di puntoRadiationIonizing radiationlaw.inventionOpticsPhotosensitivitylawFiber Optic TechnologyComputer SimulationIrradiationElectron paramagnetic resonanceGe defectsLightingbusiness.industryGermaniumGamma rayEquipment DesignModels TheoreticalSilicon DioxideAtomic and Molecular Physics and OpticsAmorphous solidEquipment Failure AnalysisGamma Raysgamma-ray irradiationComputer-Aided DesignSiO2business
researchProduct

Power saturation of ESR signal in ammonium tartrate exposed to 60Co gamma-ray photons, electrons and protons.

2006

Abstract Marrale, M., Brai, M., Triolo, A., Bartolotta, A. and D'Oca, M. C. Power Saturation of ESR Signal in Ammonium Tartrate Exposed to 60Co γ-Ray Photons, Electrons and Protons. Radiat. Res. 166, 802–809 (2006). In this paper we present an investigation of the electron spin resonance (ESR) line shape of ammonium tartrate (AT) dosimeters exposed to radiation with different linear energy transfer (LET). We exposed our dosimeters to γ-ray photons (60Co), 7 MeV and 14 MeV initial energy electrons, and 19.3 MeV initial energy protons. The differences in the power saturation behavior of ESR spectra of AT irradiated with photons, electrons and protons could be correlated to the effective LET o…

PhotonBiophysicsLinear energy transferElectronsElectronRadiationRadiation DosageSensitivity and Specificitylaw.inventionlawRadiology Nuclear Medicine and imagingLinear Energy TransferIrradiationCobalt RadioisotopesElectron paramagnetic resonanceRadiometrySaturation (magnetic)TartratesPhotonsRadiationDosimeterChemistryElectron Spin Resonance SpectroscopyReproducibility of ResultsDose-Response Relationship RadiationAmmonium Tartrate 60Co -Ray Photons Electrons and Protons.Gamma RaysAtomic physicsProtonsAlgorithmsRadiation research
researchProduct

The DArk Matter Particle Explorer mission

2017

The DArk Matter Particle Explorer (DAMPE), one of the four scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Sciences, is a general purpose high energy cosmic-ray and gamma-ray observatory, which was successfully launched on December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE scientific objectives include the study of galactic cosmic rays up to $\sim 10$ TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the search for dark matter signatures in their spectra. In this paper we illustrate the layout of the DAMPE instrument, and discuss the results of beam tests and calib…

Physics - Instrumentation and DetectorsSatellite launchesGamma ray observatoriesAstrophysicsGalactic cosmic rays01 natural sciencesCosmologyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ObservatoryDetectors and Experimental TechniquesCosmic rays dark matter space experiments010303 astronomy & astrophysicsphysics.ins-detSpace science missionsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEAstrophysics::Instrumentation and Methods for AstrophysicsInstrumentation and Detectors (physics.ins-det)CosmologyCosmology Galaxies Gamma rays Tellurium compounds Chinese Academy of Sciences Dark matter particles Explorer missions Galactic cosmic rays Gamma ray observatories Satellite launches Scientific objectives Space science missions Cosmic raysSpace ScienceAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaParticle Physics - ExperimentAstrophysics and AstronomyAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesCosmic raydark matterTellurium compounds0103 physical sciencesCosmic raysInstrumentation and Methods for Astrophysics (astro-ph.IM)010308 nuclear & particles physicshep-exGamma raysAstronomyAstronomy and AstrophysicsGalaxiesChinese academy of sciencesGalaxyScientific objectivesDark matter particlesChinese Academy of SciencesSatellitespace experimentsExplorer missionsastro-ph.IM
researchProduct

ARGO-YBJ constraints on very high energy emission from GRBs

2009

The ARGO-YBJ (Astrophysical Radiation Ground-based Observatory at YangBaJing) experiment is designed for very high energy $\gamma$-astronomy and cosmic ray researches. Due to the full coverage of a large area ($5600 m^2$) with resistive plate chambers at a very high altitude (4300 m a.s.l.), the ARGO-YBJ detector is used to search for transient phenomena, such as Gamma-ray bursts (GRBs). Because the ARGO-YBJ detector has a large field of view ($\sim$2 sr) and is operated with a high duty cycle ($>$90%), it is well suited for GRB surveying and can be operated in searches for high energy GRBs following alarms set by satellite-borne observations at lower energies. In this paper, the sensitivit…

Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaSettore FIS/01 - Fisica SperimentaleDetectorGamma rayAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsCosmic rayField of viewAstrophysicsRadiation7. Clean energy01 natural sciencesSettore FIS/05 - Astronomia e Astrofisica13. Climate actionDuty cycleObservatory0103 physical sciencesGAMMA RAY BURSTS GAMMA RAYS COSMIC RAYS EXTENDED AIR SHOWERSGamma-ray burstAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysics
researchProduct

The role of radiative losses in the late evolution of pulse-heated coronal loops/strands

2012

Radiative losses from optically thin plasma are an important ingredient for modeling plasma confined in the solar corona. Spectral models are continuously updated to include the emission from more spectral lines, with significant effects on radiative losses, especially around 1 MK. We investigate the effect of changing the radiative losses temperature dependence due to upgrading of spectral codes on predictions obtained from modeling plasma confined in the solar corona. The hydrodynamic simulation of a pulse-heated loop strand is revisited comparing results using an old and a recent radiative losses function. We find significant changes in the plasma evolution during the late phases of plas…

Physics010504 meteorology & atmospheric sciencesFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsCoronal loopPlasma01 natural sciencesSpectral lineComputational physicsPulse (physics)Cooling rateSettore FIS/05 - Astronomia E AstrofisicaAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceSun: X-rays gamma rays Sun: corona Sun: UV radiation Sun: activity radiation mechanisms: thermal hydrodynamicsPhysics::Plasma Physics0103 physical sciencesPhysics::Space PhysicsRadiative transferX-rays gamma rays Sun: corona Sun: UV radiation Sun: activity radiation mechanisms: thermal hydrodynamics [Sun]010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPlasma density
researchProduct

An iterative method in a probabilistic approach to the spectral inverse problem - Differential emission measure from line spectra and broadband data

2010

Inverse problems are of great importance in astrophysics for deriving information about the physical characteristics of hot optically thin plasma sources from their EUV and X-ray spectra. We describe and test an iterative method developed within the framework of a probabilistic approach to the spectral inverse problem for determining the thermal structures of the emitting plasma. We also demonstrate applications of this method to both high resolution line spectra and broadband imaging data. Our so-called Bayesian iterative method (BIM) is an iterative procedure based on Bayes' theorem and is used to reconstruct differential emission measure (DEM) distributions. To demonstrate the abilities …

Physics010504 meteorology & atmospheric sciencesIterative methodProbabilistic logicFOS: Physical sciencesAstronomy and AstrophysicsObservableAstrophysicsInverse problem01 natural sciencesMeasure (mathematics)Spectral lineComputational physicsSettore FIS/05 - Astronomia E AstrofisicaAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceRobustness (computer science)Sun: corona / Sun: UV radiation / Sun: X-rays gamma rays / atomic data / methods: data analysis / techniques: spectroscopic0103 physical sciencesBroadbandPhysics::Space PhysicsAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciences
researchProduct

SPI/INTEGRAL observation of the Cygnus region

2003

We present the analysis of the first observations of the Cygnus region by the SPI spectrometer onboard the Integral Gamma Ray Observatory, encompassing ${\sim}$ 600 ks of data. Three sources namely Cyg X-1, Cyg X-3 and EXO 2030+375 were clearly detected. Our data illustrate the temporal variability of Cyg X-1 in the energy range from 20 keV to 300 keV. The spectral analysis shows a remarkable stability of the Cyg X-1 spectra when averaged over one day timescale. The other goal of these observations is SPI inflight calibration and performance verification. The latest objective has been achieved as demonstrated by the results presented in this paper.

Physics010504 meteorology & atmospheric sciencesSpectrometerAstrophysics (astro-ph)Gamma rayFOS: Physical sciencesobservations [gamma rays]Astronomy and AstrophysicsAstrophysicsphysics [black hole]Astrophysics01 natural sciencesSpectral line[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Space and Planetary ScienceObservatory0103 physical sciencesCalibrationindividual : Cyg X-1 Cyg X-3 EXO 2030+375 [X-ray stars]INTEGRAL : SPI [space telescope]Spectral analysis010303 astronomy & astrophysics0105 earth and related environmental sciences
researchProduct

Post-flare evolution of AR 10923 with Hinode/XRT

2010

Flares are dynamic events which involve rapid changes in coronal magnetic topology end energy release. Even if they may be localized phenomena, the magnetic disturbance at their origin may propagate and be effective in a larger part of the active region. We investigate the temporal evolution of a flaring active region with respect to the loops morphology, the temperature, and emission measure distributions. We consider $Hinode/XRT$ data of a the 2006 November 12th C1.1 flare. We inspect the evolution of the morphology of the flaring region also with the aid of TRACE data. XRT filter ratios are used to derive temperature and emission measure maps and evolution. The analyzed flare includes se…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsMeasure (mathematics)law.inventionSettore FIS/05 - Astronomia E AstrofisicaMagnetic disturbanceastrofisica Fisica solare Sun: activity Sun: flares Sun: corona Sun: X-rays gamma raysAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencelawThermalPhysics::Space PhysicsAstrophysics::Solar and Stellar AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Flare
researchProduct