Search results for "ganglio"

showing 10 items of 362 documents

The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor

2021

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-stress-regulated protein exhibiting cytoprotective properties through a poorly understood mechanism in various in vitro and in vivo models of neuronal and non-neuronal damage. Although initially characterized as a secreted neurotrophic factor for midbrain dopamine neurons, MANF has recently gained more interest for its intracellular role in regulating the ER homeostasis, including serving as a cofactor of the chaperone glucose-regulated protein 78 (GRP78). We aimed for a better understanding of the neuroprotective mechanisms of MANF. Here we show for the first time that MANF promotes the survival of …

0301 basic medicineBiFC bimolecular fluorescence complementationMST microscale thermophoresisPDIA1 protein disulfide isomerase family A member 1ApoptosisNEUROTROPHIC FACTOR MANFEndoplasmic ReticulumBiochemistryprotein-protein interactionMiceBimolecular fluorescence complementationUPR unfolded protein responseENDOPLASMIC-RETICULUM STRESSMesencephalonNeurotrophic factorsInsulin-Secreting CellsProtein Interaction MappingBINDINGCOMPREHENSIVE RESOURCEATF6unfolded protein response (UPR)PDIA6 protein disulfide isomerase family A member 6PPIs protein-protein interactionsEndoplasmic Reticulum Chaperone BiPHeat-Shock ProteinsNPTN neuroplastinbiologyChemistryapoptosisunfolded protein responsedopamine neurons3. Good healthCell biologyGDNF glial cell line–derived neurotrophic factorIRE1-ALPHASBD substrate-binding domainendoplasmic reticulum stressMANF mesencephalic astrocyte-derived neurotrophic factorTm tunicamycinneuroprotectionResearch ArticleProtein BindingSignal TransductionGRP78Protein Disulfide-Isomerase FamilyCell SurvivalTH tyrosine hydroxylasePrimary Cell CultureSCG superior cervical ganglionProtein Disulfide-IsomerasesIRE1 inositol-requiring enzyme 1ER-STRESSER endoplasmic reticulum03 medical and health sciencesohjelmoitunut solukuolemaC-MANF C-terminal domain of MANFCSPs chemical shift perturbationsAnimalsHumansHSP70 Heat-Shock ProteinsNerve Growth FactorsNBD nucleotide-binding domainNMR nuclear magnetic resonanceMolecular Biology030102 biochemistry & molecular biologyBIPATF6Dopaminergic NeuronsGene Expression ProfilingBinding proteinneuronal cell deathDISSOCIATIONCell BiologyNEI nucleotide exchange inhibitorEmbryo MammalianadenosiinitrifosfaattiATPhermosolutmesencephalic astrocyte-derived neurotrophic factorprotein–protein interactionPERK protein kinase RNA-like ER kinaseHEK293 Cells030104 developmental biologyGene Expression RegulationChaperone (protein)Tg thapsigarginbiology.proteinUnfolded protein responseAP-MS affinity purification mass spectrometry1182 Biochemistry cell and molecular biologyGFP-SH SH-tagged GFPendoplasmic reticulum stress (ER stress)DA dopaminemesencephalic astrocyte-derived neurotrophic factor (MANF)proteiinitNeuroplastin
researchProduct

Exploiting Gangliosides for the Therapy of Ewing’s Sarcoma and H3K27M-Mutant Diffuse Midline Glioma

2021

Simple Summary Osteosarcoma, Ewing’s sarcoma, and H3K27M-mutant diffuse midline glioma are rare but aggressive malignancies occurring mainly in children. Due to their rareness and often fatal course, drug development is challenging. Here, we repurposed the existing drugs dinutuximab and eliglustat and investigated their potential to directly target or indirectly modulate the tumor cell-specific ganglioside GD2. Our data suggest that targeting and/or modulating tumor cell-specific GD2 may offer a new therapeutic strategy for the above mentioned tumor entities. Abstract The ganglioside GD2 is an important target in childhood cancer. Nevertheless, the only therapy targeting GD2 that is approve…

0301 basic medicineCancer Researchlcsh:RC254-282Article03 medical and health sciences0302 clinical medicineNeuroblastomaGliomaosteosarcomaH3K27M-mutant diffuse midline gliomamedicineGangliosidegangliosidebusiness.industrydinutuximabDinutuximabEwing's sarcomaCancerGD2eliglustatlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.disease030104 developmental biologyOncologyganglioside; GD2; dinutuximab; eliglustat; miglustat; H3K27M-mutant diffuse midline glioma; Ewing’s sarcoma; osteosarcoma030220 oncology & carcinogenesisCancer researchmiglustatSarcomaEwing’s sarcomabusinessEliglustatCancers; Volume 13; Issue 3; Pages: 520
researchProduct

Gene expression profiles uncover individual identities of gnathal neuroblasts and serial homologies in the embryonic CNS of Drosophila.

2015

The numbers and types of progeny cells generated by neural stem cells in the developing CNS are adapted to its region-specific functional requirements. In Drosophila, segmental units of the CNS develop from well-defined patterns of neuroblasts. Here we constructed comprehensive neuroblast maps for the three gnathal head segments. Based on the spatiotemporal pattern of neuroblast formation and the expression profiles of 46 marker genes (41 transcription factors), each neuroblast can be uniquely identified. Compared with the thoracic ground state, neuroblast numbers are progressively reduced in labial, maxillary and mandibular segments due to smaller sizes of neuroectodermal anlagen and, part…

0301 basic medicineCentral Nervous SystemGenetic Markersanimal structuresSerial homologyCell CountGenes InsectBiology03 medical and health sciences0302 clinical medicineNeuroblastNeural Stem CellsNeuroblastsAbdomenAnimalsCell LineageHox geneMolecular Biologyreproductive and urinary physiologyfungiAnatomyThoraxGene expression profileNeuromereStem Cells and RegenerationEmbryonic stem cellNeural stem cellCell biology103Segmental patterning030104 developmental biologyDrosophila melanogasternervous systemVentral nerve cordDrosophila brainembryonic structuresDeformedTranscriptomeGanglion mother cell030217 neurology & neurosurgeryDevelopmental BiologyDevelopment (Cambridge, England)
researchProduct

Retinal homeobox promotes cell growth, proliferation and survival of mushroom body neuroblasts in the Drosophila brain.

2016

Abstract The Drosophila mushroom bodies, centers of olfactory learning and memory in the fly ‘forebrain’, develop from a set of neural stem cells (neuroblasts) that generate a large number of Kenyon cells (KCs) during sustained cell divisions from embryonic to late pupal stage. We show that retinal homeobox ( rx ), encoding for an evolutionarily conserved transcription factor, is required for proper development of the mushroom bodies. Throughout development rx is expressed in mushroom body neuroblasts (MBNBs), their ganglion mother cells (MB-GMCs) and young KCs. In the absence of rx function, MBNBs form correctly but exhibit a reduction in cell size and mitotic activity, whereas overexpress…

0301 basic medicineEmbryologyanimal structuresNerve Tissue ProteinsBiologyRetina03 medical and health sciencesNeuroblastNeural Stem CellsAnimalsDrosophila ProteinsMitosisMushroom BodiesCell ProliferationGanglion CystsHomeodomain ProteinsNeuronsCell growthfungiCell CycleBrainNuclear ProteinsAnatomyEmbryonic stem cellNeural stem cellCell biologyRepressor Proteins030104 developmental biologyDrosophila melanogasterLarvaMushroom bodiesForebrainHomeoboxDevelopmental BiologyTranscription FactorsMechanisms of development
researchProduct

Sensory neuropathy in progressive motor neuronopathy(pmn)mice is associated with defects in microtubule polymerization and axonal transport

2016

Motor neuron diseases such as amyotrophic lateral sclerosis (ALS) are now recognized as multi-system disorders also involving various non-motor neuronal cell types. The precise extent and mechanistic basis of non-motor neuron damage in human ALS and ALS animal models remain however unclear. To address this, we here studied progressive motor neuronopathy (pmn) mice carrying a missense loss-of-function mutation in tubulin binding cofactor E (TBCE). These mice manifest a particularly aggressive form of motor axon dying back and display a microtubule loss, similar to that induced by human ALS-linked TUBA4A mutations. Using whole nerve confocal imaging of pmn × thy1.2-YFP16 fluorescent reporter …

0301 basic medicineGeneral NeuroscienceMotor neuronBiologymedicine.disease3. Good healthPathology and Forensic MedicineMicrotubule polymerizationTubulin binding03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structurenervous systemDorsal root ganglionmedicineAxoplasmic transportNeurology (clinical)NeuronAxonAmyotrophic lateral sclerosisNeuroscience030217 neurology & neurosurgeryBrain Pathology
researchProduct

RINT1 Loss Impairs Retinogenesis Through TRP53-Mediated Apoptosis

2020

Genomic instability in the central nervous system (CNS) is associated with defective neurodevelopment and neurodegeneration. Congenital human syndromes that affect the CNS development originate from mutations in genes of the DNA damage response (DDR) pathways. RINT1 (Rad50-interacting protein 1) is a partner of RAD50, that participates in the cellular responses to DNA double-strand breaks (DSB). Recently, we showed that Rint1 regulates cell survival in the developing brain and its loss led to premature lethality associated with genomic stability. To bypass the lethality of Rint1 inactivation in the embryonic brain and better understand the roles of RINT1 in CNS development, we conditionally…

0301 basic medicineGenome instabilityDNA damagereplicative stressBiologyDNA damage responseRetinal ganglionganglion cellsCell and Developmental Biology03 medical and health sciences0302 clinical medicinemedicineoptic nerve hypoplasiaProgenitor celllcsh:QH301-705.5Original ResearchNeurogenesisNeurodegenerationneurodegenerationCell BiologyCell cyclemedicine.diseaseNeural stem cellCell biologyneurogenesis030104 developmental biologylcsh:Biology (General)030220 oncology & carcinogenesisvisual system developmentDevelopmental BiologyFrontiers in Cell and Developmental Biology
researchProduct

2017

Purpose of this study was to investigate firstly specific proteomic changes within the retina in the course of an animal glaucoma model and to identify secondly new approaches for neuroprotective, therapeutic options in glaucoma by addressing those specific changes. Intraocular pressure was elevated through cauterization of episcleral veins in adult Sprague Dawley rats. Molecular and morphological changes were surveyed using mass spectrometry, optical coherence tomography as well as immunohistochemical cross section- and flat mount stainings. By quantifying more than 1500 retinal proteins, it was found that the HspB5 protein and numerous beta-crystallins showed a uniform and unique shifting…

0301 basic medicineIntraocular pressuremedicine.medical_specialtygenetic structuresNerve fiber layerGlaucomaContext (language use)03 medical and health scienceschemistry.chemical_compound0302 clinical medicineOphthalmologymedicineRetinaMultidisciplinarybusiness.industryRetinalmedicine.diseaseeye diseases030104 developmental biologymedicine.anatomical_structureRetinal ganglion cellchemistry030221 ophthalmology & optometryOptic nervesense organsbusinessPLOS ONE
researchProduct

Neuroprotective and Anti-Inflammatory Effects of a Hydrophilic Saffron Extract in a Model of Glaucoma

2019

Glaucoma is a neurodegenerative disease characterized by the loss of retinal ganglion cells (RGCs). An increase in the intraocular pressure is the principal risk factor for such loss, but controlling this pressure does not always prevent glaucomatous damage. Activation of immune cells resident in the retina (microglia) may contribute to RGC death. Thus, a substance with anti-inflammatory activity may protect against RGC degeneration. This study investigated the neuroprotective and anti-inflammatory effects of a hydrophilic saffron extract standardized to 3% crocin content in a mouse model of unilateral, laser-induced ocular hypertension (OHT). Treatment with saffron extract decreased microg…

0301 basic medicineIntraocular pressureretinagenetic structuresAnti-Inflammatory AgentsOcular hypertensionmicrogliaPharmacologysaffron extractneuroinflammationCrocinlcsh:ChemistryMicechemistry.chemical_compound0302 clinical medicinelcsh:QH301-705.5SpectroscopyIba-1General MedicineComputer Science ApplicationsNeuroprotective Agentsmedicine.anatomical_structureRetinal ganglion cellOftalmologíaneuroprotectionHydrophobic and Hydrophilic InteractionsNeurocienciasRetinal ganglionNeuroprotectionArticleCatalysisganglion cellsInorganic Chemistry03 medical and health sciencesP2RY12medicineAnimalsPhysical and Theoretical ChemistryMolecular BiologyIntraocular PressureNeuroinflammationexperimental glaucomaRetinaPlant Extractsbusiness.industryOrganic ChemistryBrn3aGlaucomaCrocusmedicine.diseaseAnatomía oculareye diseasesDisease Models Animal030104 developmental biologychemistrylcsh:Biology (General)lcsh:QD1-999sense organsbusinessBiomarkers030217 neurology & neurosurgeryInternational Journal of Molecular Sciences
researchProduct

Characterization and Stage-Dependent Lineage Analysis of Intermediate Progenitors of Cortical GABAergic Interneurons

2021

Intermediate progenitors of both excitatory and inhibitory neurons, which can replenish neurons in the adult brain, were recently identified. However, the generation of intermediate progenitors of GABAergic inhibitory neurons (IPGNs) has not been studied in detail. Here, we characterized the spatiotemporal distribution of IPGNs in mouse cerebral cortex. IPGNs generated neurons during both embryonic and postnatal stages, but the embryonic IPGNs were more proliferative. Our lineage tracing analyses showed that the embryonically proliferating IPGNs tended to localize to the superficial layers rather than the deep cortical layers at 3 weeks after birth. We also found that embryonic IPGNs derive…

0301 basic medicineLineage (genetic)Ganglionic eminencelaminar distributionNeurosciences. Biological psychiatry. NeuropsychiatryBiologyInhibitory postsynaptic potential03 medical and health sciences0302 clinical medicinemedicinecortical developmentGABAergic neuron progenitorsProgenitor cellOriginal ResearchGeneral NeuroscienceEmbryonic stem cellCell biology030104 developmental biologymedicine.anatomical_structureCerebral cortexExcitatory postsynaptic potentialGABAergicfate analysis030217 neurology & neurosurgeryNeurosciencelineageRC321-571Frontiers in Neuroscience
researchProduct

Amyloid β-peptide insertion in liposomes containing GM1-cholesterol domains.

2015

Neuronal membrane damage is related to the early impairments appearing in Alzheimer's disease due to the interaction of the amyloid β-peptide (Aβ) with the phospholipid bilayer. In particular, the ganglioside GM1, present with cholesterol in lipid rafts, seems to be able to initiate Aβ aggregation on membrane. We studied the thermodynamic and structural effects of the presence of GM1 on the interaction between Aβ and liposomes, a good membrane model system. Isothermal Titration Calorimetry highlighted the importance of the presence of GM1 in recruiting monomeric Aβ toward the lipid bilayer. Light and Small Angle X-ray Scattering revealed a different pattern for GM1 containing liposomes, bot…

0301 basic medicineLiposomeGangliosideAmyloid beta-PeptidesAmyloidCalorimetry Differential ScanningChemistryBilayerOrganic ChemistryBiophysicsIsothermal titration calorimetryG(M1) GangliosideBiochemistry03 medical and health sciences030104 developmental biologyMembraneCholesterolBiochemistryLiposomesThermodynamicslipids (amino acids peptides and proteins)A?-membrane interaction; Double layer perturbation; Isothermal titration calorimetry; Small angle X-ray scatteringLipid bilayerLipid raftBiophysical chemistry
researchProduct