Search results for "gap junctions"

showing 10 items of 38 documents

Visualization of Simulated Arrhythmias due to Gap Junctions

2018

New computational models are able to simulate details of cardiac cell networks. Their results allow a better understanding of the functionality of the heart and suggest possible actions to reduce non-fatal premature beats that can give rise to serious diseases. We developed a user-friendly interface to organize Neuron simulations and to present in real-time a three-dimensional representation of the electrical activity due to the gap junctions which interconnect the cells inside cardiac tissues. All physiological parameters were set according to real experimental observations and compared against different types of arrhythmias, retrieved from the Physionet Data Base.

0301 basic medicine030103 biophysicsComputational modelSettore INF/01 - InformaticaComputer scienceInterface (computing)Gap junctionPremature BeatsCardiac cellVisualization03 medical and health sciencesRepresentation (mathematics)Gap junctions erratic arrhythmias Neuron simulation Blender renderingSimulationProceedings of the 19th International Conference on Computer Systems and Technologies
researchProduct

GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks.

2017

The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide…

0301 basic medicineBiolääketieteet - Biomedicineneural networkstem cell derived neuronslcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineCalcium imagingPremovement neuronal activityhuman pluripotent stem cellsInduced pluripotent stem celllcsh:Neurosciences. Biological psychiatry. Neuropsychiatrygap junctionsOriginal ResearchArtificial neural networkGABAA receptorChemistrymicroelectrode arrayGap junctionsynchronyDepolarizationMultielectrode arraycalcium imaging030104 developmental biologynervous systemexcitatory GABANeuroscienceNeurotieteet - Neurosciences030217 neurology & neurosurgeryNeuroscienceFrontiers in cellular neuroscience
researchProduct

Bioelectrical Signals and Ion Channels in the Modeling of Multicellular Patterns and Cancer Biophysics

2016

AbstractBioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects …

0301 basic medicineCell signalingComputer scienceCèl·lulesQuantitative Biology::Tissues and OrgansCellElectrophysiological PhenomenaCell CommunicationModels BiologicalArticleBiophysical PhenomenaIon ChannelsMembrane PotentialsQuantitative Biology::Cell BehaviorCell membraneion transport03 medical and health sciences0302 clinical medicineNeoplasmsmedicineHumansbiological physicsIon channelIon transporterMembrane potentialMultidisciplinaryBiophysical PhenomenaGap junctionGap JunctionsBiofísicaElectrophysiological PhenomenaMulticellular organism030104 developmental biologymedicine.anatomical_structure030220 oncology & carcinogenesisBiophysicsScientific Reports
researchProduct

Complexity of gap junctions between horizontal cells of the carp retina.

2016

In the vertebrate retina, horizontal cells (HCs) reveal homologous coupling by gap junctions (gj), which are thought to consist of different connexins (Cx). However, recent studies in mouse, rabbit and zebrafish retina indicate that individual HCs express more than one connexin. To provide further insights into the composition of gj connecting HCs and to determine whether HCs express multiple connexins, we examined the molecular identity and distribution of gj between HCs of the carp retina. We have cloned four carp connexins designated Cx49.5, Cx55.5, Cx52.6 and Cx53.8 with a close relationship to connexins previously reported in HCs of mouse, rabbit and zebrafish, respectively. Using in s…

0301 basic medicineFish ProteinsCarpsImmunoelectron microscopyBlotting WesternConnexinIn situ hybridizationRetinal Horizontal Cellsbehavioral disciplines and activitiesPolymerase Chain ReactionConnexins03 medical and health sciencesMice0302 clinical medicineCell Line TumormedicineAnimalsProtein IsoformsElectrical synapseAmino Acid SequenceCarpMicroscopy ImmunoelectronZebrafishIn Situ HybridizationRetinabiologyGeneral NeuroscienceGap junctionGap JunctionsAnatomyDendritesbiology.organism_classificationImmunohistochemistryAxonsCell biology030104 developmental biologymedicine.anatomical_structureembryonic structuressense organsSequence Alignment030217 neurology & neurosurgeryNeuroscience
researchProduct

Bioelectrical coupling in multicellular domains regulated by gap junctions: A conceptual approach.

2018

We review the basic concepts involved in bioelectrically-coupled multicellular domains, focusing on the role of membrane potentials (Vmem). In the first model, single-cell Vmem is modulated by two generic polarizing and depolarizing ion channels, while intercellular coupling is implemented via voltage-gated gap junctions. Biochemical and bioelectrical signals are integrated via a feedback loop between Vmem and the transcription and translation of a protein forming an ion channel. The effective rate constants depend on the single-cell Vmem because these potentials modulate the local concentrations of signaling molecules and ions. This electrochemically-based idealization of the complex bioph…

0301 basic medicinePhysicsMembrane potentialFinite volume methodBiophysicsGap junctionGap JunctionsDepolarizationGeneral MedicineFeedback loopInterconnectivityModels BiologicalIon ChannelsIonElectrophysiological PhenomenaMembrane Potentials03 medical and health sciences030104 developmental biologyElectrochemistryAnimalsHumansPhysical and Theoretical ChemistryBiological systemIon channelSignal TransductionBioelectrochemistry (Amsterdam, Netherlands)
researchProduct

MicroRNA Intercellular Transfer and Bioelectrical Regulation of Model Multicellular Ensembles by the Gap Junction Connectivity.

2017

We have studied theoretically the microRNA (miRNA) intercellular transfer through voltage-gated gap junctions in terms of a biophysically grounded system of coupled differential equations. Instead of modeling a specific system, we use a general approach describing the interplay between the genetic mechanisms and the single-cell electric potentials. The dynamics of the multicellular ensemble are simulated under different conditions including spatially inhomogeneous transcription rates and local intercellular transfer of miRNAs. These processes result in spatiotemporal changes of miRNA, mRNA, and ion channel protein concentrations that eventually modify the bioelectrical states of small multi…

0301 basic medicinePhysicsModels MolecularCell signalingQuantitative Biology::Molecular NetworksEnsemble averageGap junctionIon Channel ProteinGap JunctionsNanotechnologyTransfectionQuantitative Biology::GenomicsQuantitative Biology::Cell BehaviorSurfaces Coatings and FilmsCoupled differential equations03 medical and health sciencesMulticellular organismMicroRNAs030104 developmental biologymicroRNAMaterials ChemistryBiophysicsPhysical and Theoretical ChemistryIntracellularThe journal of physical chemistry. B
researchProduct

Glucose and hypothalamic astrocytes: More than a fueling role?

2015

Brain plays a central role in energy homeostasis continuously integrating numerous peripheral signals such as circulating nutrients, and in particular blood glucose level, a variable that must be highly regulated. Then, the brain orchestrates adaptive responses to modulate food intake and peripheral organs activity in order to achieve the fine tuning of glycemia. More than fifty years ago, the presence of glucose-sensitive neurons was discovered in the hypothalamus, but what makes them specific and identifiable still remains disconnected from their electrophysiological signature. On the other hand, astrocytes represent the major class of macroglial cells and are now recognized to support an…

0301 basic medicinemedicine.medical_specialty[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionHypothalamusNutrient sensingEnergy homeostasis03 medical and health sciences0302 clinical medicineInternal medicinemedicineAnimalsHumansastroglial hemichannelsglucoselactateArc (protein)biologyastroglial gap junctionsMechanism (biology)GlucokinaseGeneral NeuroscienceGlucose transporterGap Junctionsconnexins 30 and 43030104 developmental biologyEndocrinologyHypothalamushypothalamic glucose sensing[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Astrocytesbiology.proteinGLUT2[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Neuroscience[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgery
researchProduct

Rapid developmental switch in the mechanisms driving early cortical columnar networks

2006

The immature cerebral cortex self-organizes into local neuronal clusters long before it is activated by patterned sensory inputs. In the cortical anlage of newborn mammals, neurons coassemble through electrical or chemical synapses either spontaneously or by activation of transmitter-gated receptors. The neuronal network and the cellular mechanisms underlying this cortical self-organization process during early development are not completely understood. Here we show in an intact in vitro preparation of the immature mouse cerebral cortex that neurons are functionally coupled in local clusters by means of propagating network oscillations in the beta frequency range. In the newborn mouse, this…

Action PotentialsSensory systemBiologyReceptors N-Methyl-D-AspartateSynapseMiceSubplatemedicineBiological neural networkAnimalsReceptorNeuronsMultidisciplinaryGap junctionGap JunctionsSomatosensory CortexElectrophysiologyMice Inbred C57BLElectrophysiologymedicine.anatomical_structureBiochemistryAnimals NewbornCerebral cortexSynapsesNMDA receptorCarbacholNeuronCortical columnNeurosciencee-Neuroforum
researchProduct

Bioelectrical model of head-tail patterning based on cell ion channels and intercellular gap junctions

2020

Robust control of anterior-posterior axial patterning during regeneration is mediated by bioelectric signaling. However, a number of systems-level properties of bioelectrochemical circuits, including stochastic outcomes such as seen in permanently de-stabilized "cryptic" flatworms, are not completely understood. We present a bioelectrical model for head-tail patterning that combines single-cell characteristics such as membrane ion channels with multicellular community effects via voltage-gated gap junctions. It complements the biochemically-focused models by describing the effects of intercellular electrochemical coupling, cutting plane, and gap junction blocking of the multicellular ensemb…

BioquímicaTailPolarity (physics)Cèl·lulesBiophysicsHead-tail patterning02 engineering and technology01 natural sciencesIon ChannelsGap junctional communicationElectrochemistryAnimalsRegenerationPhysical and Theoretical ChemistryIon channelBody PatterningPhysicsbiologyRegeneration (biology)010401 analytical chemistryGap junctionGap JunctionsPlanariansGeneral Medicine021001 nanoscience & nanotechnologybiology.organism_classificationElectrophysiological Phenomena0104 chemical sciencesCoupling (electronics)Multicellular organismBioelectricityPlanarianBiophysicsPositional information0210 nano-technologyIon channelHeadIntracellular
researchProduct

Nitric oxide--a versatile key player in cochlear function and hearing disorders.

2012

Nitric oxide (NO) is a signaling molecule which can generally be formed by three nitric oxide synthases (NOS). Two of them, the endothelial nitric oxide synthase (eNOS) and the neural nitric oxide synthase (nNOS), are calcium/calmodulin-dependent and constitutively expressed in many cell types. Both isoforms are found in the vertebrate cochlea. The inducible nitric oxide synthase (iNOS) is independent of calcium and normally not detectable in the un-stimulated cochlea. In the inner ear, as in other tissues, NO was identified as a multitask molecule involved in various processes such as neurotransmission and neuromodulation. In addition, increasing evidence demonstrates that the NO-dependent…

Cancer Researchmedicine.medical_specialtyCell typePhysiologyHearing lossClinical BiochemistryPopulationAscorbic AcidBiologyNitric OxideBiochemistryAntioxidantsNitric oxidechemistry.chemical_compoundMiceInternal medicineotorhinolaryngologic diseasesmedicineAnimalsHumansInner eareducationHearing DisordersCochleaeducation.field_of_studyGap JunctionsAscorbic acidCell biologyCochleaNitric oxide synthaseEndocrinologymedicine.anatomical_structurechemistrybiology.proteinmedicine.symptomGentamicinsNitric oxide : biology and chemistry
researchProduct