Search results for "genetic code"
showing 6 items of 26 documents
An Epigenetic Alphabet of Crop Adaptation to Climate Change
2022
Crop adaptation to climate change is in a part attributed to epigenetic mechanisms which are related to response to abiotic and biotic stresses. Although recent studies increased our knowledge on the nature of these mechanisms, epigenetics remains under-investigated and still poorly understood in many, especially non-model, plants, Epigenetic modifications are traditionally divided into two main groups, DNA methylation and histone modifications that lead to chromatin remodeling and the regulation of genome functioning. In this review, we outline the most recent and interesting findings on crop epigenetic responses to the environmental cues that are most relevant to climate change. In additi…
A statistical analysis of the three-fold evolution of genomic compression through frame overlaps in prokaryotes
2007
Abstract Background Among microbial genomes, genetic information is frequently compressed, exploiting redundancies in the genetic code in order to store information in overlapping genes. We investigate the length, phase and orientation properties of overlap in 58 prokaryotic species evaluating neutral and selective mechanisms of evolution. Results Using a variety of statistical null models we find patterns of compressive coding that can not be explained purely in terms of the selective processes favoring genome minimization or translational coupling. The distribution of overlap lengths follows a fat-tailed distribution, in which a significant proportion of overlaps are in excess of 100 base…
2019
Abstract Tyrosine nitration is a post-translational protein modification relevant to various pathophysiological processes. Chemical nitration procedures have been used to generate and study nitrated proteins, but these methods regularly lead to modifications at other amino acid residues. A novel strategy employs a genetic code modification that allows incorporation of 3-nitrotyrosine (3-NT) during ribosomal protein synthesis to generate a recombinant protein with defined 3-NT-sites, in the absence of other post-translational modifications. This approach was applied to study the generation and stability of the 3-NT moiety in recombinant proteins produced in E.coli. Nitrated alpha-synuclein (…
MultiBacTAG-Genetic Code Expansion Using the Baculovirus Expression System in Sf21 Cells
2018
The combination of genetic code expansion (GCE) and baculovirus-based protein expression in Spodoptera frugiperda cells is a powerful tool to express multiprotein complexes with site-specifically introduced noncanonical amino acids. This protocol describes the integration of synthetase and tRNA gene indispensable for GCE into the backbone of the Bacmid, the Tn7-mediated transposition of various genes of interest, as well as the final expression of protein using the MultiBacTAG system with different noncanonical amino acids.
Comprehensive evaluation of coding region point mutations in microsatellite-unstable colorectal cancer
2018
Microsatellite instability (MSI) leads to accumulation of an excessive number of mutations in the genome, mostly small insertions and deletions. MSI colorectal cancers (CRCs), however, also contain more point mutations than microsatellite-stable (MSS) tumors, yet they have not been as comprehensively studied. To identify candidate driver genes affected by point mutations in MSI CRC, we ranked genes based on mutation significance while correcting for replication timing and gene expression utilizing an algorithm, MutSigCV. Somatic point mutation data from the exome kit-targeted area from 24 exome-sequenced sporadic MSI CRCs and respective normals, and 12 whole-genome-sequenced sporadic MSI CR…
Nucleic Acids and Nuclear Proteins
1994
DNA deserves the most attention in any book dealing with molecular variety in animals. The complete genetic information of the organism is encoded in the order of the bases, and with it also is the whole spectrum of genetically determined variation within and between individuals. One can view DNA as a text in which each of the four letters at each position has a unique meaning. Some information and variety is lost en route from the DNA via RNA to the proteins and the complex morphological and physiological characters because only part of the DNA is transcribed into RNA, and not all RNA codes for proteins; furthermore, the genetic code is degenerate and the 64 possible triplet codons define …