Search results for "genome sequencing"
showing 10 items of 188 documents
Production of Haploid and Doubled Haploid Lines in Nut Crops: Persian Walnut, Almond, and Hazelnut
2021
This chapter deals with induction of haploidy via parthenogenesis in Persian walnut and via microspore embryogenesis in almond and hazelnut. Haploid induction through in situ parthenogenesis using pollination with irradiated pollen to stimulate the embryogenic development of the egg cell, followed by in vitro culture of the immature haploid embryos. Microspore embryogenesis allows the induction of immature pollen grains (microspores), to move away from the normal gametophytic developmental route in the direction of the sporophytic one, yielding homozygous organisms (embryos in this case). Unlike other fruit crops (such as Citrus), regeneration of entire plants has not yet been obtained in o…
On the power and the systematic biases of the detection of chromosomal inversions by paired-end genome sequencing
2013
One of the most used techniques to study structural variation at a genome level is paired-end mapping (PEM). PEM has the advantage of being able to detect balanced events, such as inversions and translocations. However, inversions are still quite difficult to predict reliably, especially from high-throughput sequencing data. We simulated realistic PEM experiments with different combinations of read and library fragment lengths, including sequencing errors and meaningful base-qualities, to quantify and track down the origin of false positives and negatives along sequencing, mapping, and downstream analysis. We show that PEM is very appropriate to detect a wide range of inversions, even with …
Confidence-based Somatic Mutation Evaluation and Prioritization
2012
Next generation sequencing (NGS) has enabled high throughput discovery of somatic mutations. Detection depends on experimental design, lab platforms, parameters and analysis algorithms. However, NGS-based somatic mutation detection is prone to erroneous calls, with reported validation rates near 54% and congruence between algorithms less than 50%. Here, we developed an algorithm to assign a single statistic, a false discovery rate (FDR), to each somatic mutation identified by NGS. This FDR confidence value accurately discriminates true mutations from erroneous calls. Using sequencing data generated from triplicate exome profiling of C57BL/6 mice and B16-F10 melanoma cells, we used the exist…
The amphibian globin gene repertoire as revealed by the <i>Xenopus </i>genome
2006
The draft genome sequence of the Western clawed frog <i>Xenopus (Silurana) tropicalis</i> facilitates the identification, expression analysis and phylogenetic classification of the amphibian globin gene repertoire. Frog and mammalian neuroglobin display about 67% protein sequence identity, with the expected predominant expression in frog brain and eye. Frog and mammalian cytoglobins share about 69% of their amino acids, but the frog protein lacks the mammalian-type extension at the C-terminus. Like in mammals, <i>X. tropicalis</i> cytoglobin is expressed in many organs including neural tissue. Neuroglobin and cytoglobin genomic regions are syntenically conserved in a…
Adaptive response to wine selective pressures shapes the genome of a Saccharomyces interspecies hybrid
2021
During industrial processes, yeasts are exposed to harsh conditions, which eventually lead to adaptation of the strains. In the laboratory, it is possible to use experimental evolution to link the evolutionary biology response to these adaptation pressures for the industrial improvement of a specific yeast strain. In this work, we aimed to study the adaptation of a wine industrial yeast in stress conditions of the high ethanol concentrations present in stopped fermentations and secondary fermentations in the processes of champagne production. We used a commercial Saccharomyces cerevisiae × S. uvarum hybrid and assessed its adaptation in a modified synthetic must (M-SM) containing high ethan…
Progress in Arabidopsis genome sequencing and functional genomics
2000
Arabidopsis thaliana has a relatively small genome of approximately 130 Mb containing about 10% repetitive DNA. Genome sequencing studies reveal a gene-rich genome, predicted to contain approximately 25 000 genes spaced on average every 4.5 kb. Between 10 to 20% of the predicted genes occur as clusters of related genes, indicating that local sequence duplication and subsequent divergence generates a significant proportion of gene families. In addition to gene families, repetitive sequences comprise individual and small clusters of two to three retroelements and other classes of smaller repeats. The clustering of highly repetitive elements is a striking feature of the A. thaliana genome emer…
Complete genome of a European hepatitis C virus subtype 1g isolate: phylogenetic and genetic analyses
2008
Abstract Background Hepatitis C virus isolates have been classified into six main genotypes and a variable number of subtypes within each genotype, mainly based on phylogenetic analysis. Analyses of the genetic relationship among genotypes and subtypes are more reliable when complete genome sequences (or at least the full coding region) are used; however, so far 31 of 80 confirmed or proposed subtypes have at least one complete genome available. Of these, 20 correspond to confirmed subtypes of epidemic interest. Results We present and analyse the first complete genome sequence of a HCV subtype 1g isolate. Phylogenetic and genetic distance analyses reveal that HCV-1g is the most divergent su…
Decreasing the Number of Gaps in the Draft Assembly of theMannheimia Haemolytica M7/2 Genome Sequence
2009
Proposal of a Genome Editing System for Genetic Resistance to Tomato Spotted Wilt Virus
2014
Viruses provoke considerable economical losses in agriculture. New molecular approaches to develop genetic resistance based on translational genomics and precision genetic modifications are highly expected. The type II Clustered, Regularly Interspaced Palindromic Repeats (CRISPR) system including Cas9 nuclease represent a promising and very powerful tool to specifically modulate the expression and activity of genes involved in biotic stress responses. In this study, we describe an approach to develop a platform system based on CRISPR system for genome editing technology in tomato. Tomato is an excellent plant for this approach considering the high-quality genome sequence, the rapid life cyc…
Complete Genome Sequence of “Candidatus Tremblaya princeps” Strain PCVAL, an Intriguing Translational Machine below the Living-Cell Status
2011
ABSTRACT The sequence of the genome of “ Candidatus Tremblaya princeps” strain PCVAL, the primary endosymbiont of the citrus mealybug Planococcus citri , has been determined. “ Ca . Tremblaya princeps” presents an unusual nested endosymbiosis and harbors a gammaproteobacterial symbiont within its cytoplasm in all analyzed mealybugs. The genome sequence reveals that “ Ca . Tremblaya princeps” cannot be considered an independent organism but that the consortium with its gammaproteobacterial symbiotic associate represents a new composite living being.