Search results for "gluon"
showing 10 items of 697 documents
CP-violating Higgs boson production in association with three jets via gluon fusion
2014
In these proceedings, we present results for Higgs production at the LHC via gluon fusion with triple real emission corrections and the validity range of the heavy-top effective theory approximation for this process. For a general CP-violating Higgs boson, we show that bottom-quark loop corrections in combination with large values of $\tan \beta $ significantly distort differential distributions.
Scalar particle contribution to Higgs production via gluon fusion at NLO
2007
22 pages, 5 figures.-- ISI Article Identifier: 000252243700095.-- ArXiv pre-print available at: http://arxiv.org/abs/0709.4227
Gluon Polarisation in the Nucleon and Longitudinal Double Spin Asymmetries from Open Charm Muoproduction
2009
The gluon polarisation in the nucleon has been determined by detecting charm production via D0 meson decay to charged K and pi in polarised muon scattering off a longitudinally polarised deuteron target. The data were taken by the COMPASS Collaboration at CERN between 2002 and 2006 and corresponds to an integrated luminosity of 2.8 fb^-1. The dominant underlying process of charm production is the photon-gluon fusion to a cc-bar pair. A leading order QCD approach gives an average gluon polarisation of (Delta g/g)_x= -0.49 +- 0.27(stat) +- 0.11(syst) at a scale mu^2 ~ 13 (GeV/c)^2 and at an average gluon momentum fraction (x) ~ 0.11. The longitudinal cross-section asymmetry for D0 production …
A perturbative QCD study of dijets in p+Pb collisions at the LHC
2013
Inspired by the recent measurements of the CMS collaboration, we report a QCD study of dijet production in proton+lead collisions at the LHC involving large-transverse-momentum jets, $p_T \gtrsim 100$ GeV. Examining the inherent uncertainties of the next-to-leading order perturbative QCD calculations and their sensitivity to the free proton parton distributions (PDFs), we observe a rather small, typically much less than 5% clearance for the shape of the dijet rapidity distribution within approximately 1.5 units around the midrapidity. Even a more stable observable is the ratio between the yields in the positive and negative dijet rapidity, for which the baseline uncertainty can be made negl…
Tracing the origin of azimuthal gluon correlations in the color glass condensate
2016
We examine the origins of azimuthal correlations observed in high energy proton-nucleus collisions by considering the simple example of the scattering of uncorrelated partons off color fields in a large nucleus. We demonstrate how the physics of fluctuating color fields in the color glass condensate (CGC) effective theory generates these azimuthal multiparticle correlations and compute the corresponding Fourier coefficients v_n within different CGC approximation schemes. We discuss in detail the qualitative and quantitative differences between the different schemes. We will show how a recently introduced color field domain model that captures key features of the observed azimuthal correlati…
Influence of temperature-dependent shear viscosity on elliptic flow at backward and forward rapidities in ultrarelativistic heavy-ion collisions
2014
We explore the influence of a temperature-dependent shear viscosity over entropy density ratio $\eta/s$ on the azimuthal anisotropies v_2 and v_4 of hadrons at various rapidities. We find that in Au+Au collisions at full RHIC energy, $\sqrt{s_{NN}}=200$ GeV, the flow anisotropies are dominated by hadronic viscosity at all rapidities, whereas in Pb+Pb collisions at the LHC energy, $\sqrt{s_{NN}}=2760$ GeV, the flow coefficients are affected by the viscosity both in the plasma and hadronic phases at midrapidity, but the further away from midrapidity, the more dominant the hadronic viscosity is. We find that the centrality and rapidity dependence of the elliptic and quadrangular flows can help…
Dijets in p + Pb collisions and their quantitative constraints for nuclear PDFs
2014
We present a perturbative QCD analysis concerning the production of high-pT dijets in p+Pb collisions at the LHC. The next-to-leading order corrections, scale variations and free-proton PDF uncertainties are found to have only a relatively small influence on the normalized dijet rapidity distributions. Interestingly, however, these novel observables prove to retain substantial sensitivity to the nuclear effects in the PDFs. Especially, they serve as a more robust probe of the nuclear gluon densities at $x>0.01$, than e.g. the inclusive hadron production. We confront our calculations with the recent data by the CMS collaboration. These preliminary data lend striking support to the gluon a…
Long range two-particle rapidity correlations in collisions from high energy QCD evolution
2009
Long range rapidity correlations in A+A collisions are sensitive to strong color field dynamics at early times after the collision. These can be computed in a factorization formalism \cite{GelisLV5} which expresses the $n$-gluon inclusive spectrum at arbitrary rapidity separations in terms of the multi-parton correlations in the nuclear wavefunctions. This formalism includes all radiative and rescattering contributions, to leading accuracy in $\alpha_s\Delta Y$, where $\Delta Y$ is the rapidity separation between either one of the measured gluons and a projectile, or between the measured gluons themselves. In this paper, we use a mean field approximation for the evolution of the nuclear wav…
Rate Equation Network for Baryon Production in High Energy Nuclear Collisions
2003
We develop and solve a network of rate equations for the production of baryons and anti-baryons in high energy nuclear collisions. We include all members of the baryon octet and decuplet and allow for transformations among them. This network is solved during a relativistic 2+1 hydrodynamical expansion of the of the hot matter created in the collision. As an application we compare to the number of protons, lambdas, negative cascades, and omega baryons measured at mid-rapidity in central collisions of gold nuclei at 65 GeV per nucleon at the Relativistic Heavy Ion Collider (RHIC).
Electron Ion Collider: The Next QCD Frontier - Understanding the glue that binds us all
2016
This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics and, in particular, the focused ten-week program on "Gluons and quark sea a…