Search results for "guanine"

showing 10 items of 216 documents

Dynamics of the excited-state hydrogen transfer in a (dG)·(dC) homopolymer: intrinsic photostability of DNA

2018

Multiscale molecular dynamics simulations reveal out-of-plane distortions that favour DNA photostability. A novel photostability mechanism involving four proton transfers and triggered by a nearby Na+ ion is also unveiled.

010304 chemical physicsProtonChemistryBase pairGuanineGeneral ChemistryHydrogen atom010402 general chemistry01 natural sciences0104 chemical sciencesNucleobase[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistrychemistry.chemical_compoundChemistryChemical physicsExcited state0103 physical sciencesMolecule[CHIM]Chemical SciencesGround stateComputingMilieux_MISCELLANEOUS
researchProduct

Sorting Motifs Involved in the Trafficking and Localization of the PIN1 Auxin Efflux Carrier

2016

In contrast with the wealth of recent reports about the function of μ-adaptins and clathrin adaptor protein (AP) complexes, there is very little information about the motifs that determine the sorting of membrane proteins within clathrin-coated vesicles in plants. Here, we investigated putative sorting signals in the large cytosolic loop of the Arabidopsis (Arabidopsis thaliana) PIN-FORMED1 (PIN1) auxin transporter, which are involved in binding μ-adaptins and thus in PIN1 trafficking and localization. We found that Phe-165 and Tyr-280, Tyr-328, and Tyr-394 are involved in the binding of different μ-adaptins in vitro. However, only Phe-165, which binds μA(μ2)- and μD(μ3)-adaptin, was found …

0106 biological sciences0301 basic medicinePhysiologyPhenylalanineGreen Fluorescent ProteinsMutantArabidopsisPlant ScienceProtein Sorting SignalsEndoplasmic ReticulumEndocytosis01 natural sciencesClathrin03 medical and health sciencesCytosolGeneticsGuanine Nucleotide Exchange FactorsSecretory pathwaybiologyArabidopsis ProteinsEndoplasmic reticulumMembrane Transport ProteinsSignal transducing adaptor proteinArticlesPlants Genetically ModifiedClathrinEndocytosisAdaptor Protein Complex mu SubunitsTransport proteinCell biologyProtein Transport030104 developmental biologyProtein Sorting SignalsMutationbiology.protein010606 plant biology & botanyPlant Physiology
researchProduct

Abacavir induces platelet-endothelium interactions by interfering with purinergic signalling: A step from inflammation to thrombosis.

2017

The controversy connecting Abacavir (ABC) with cardiovascular disease has been fuelled by the lack of a credible mechanism of action. ABC shares structural similarities with endogenous purines, signalling molecules capable of triggering prothrombotic/proinflammatory programmes. Platelets are leading actors in the process of thrombosis. Our study addresses the effects of ABC on interactions between platelets and other vascular cells, while exploring the adhesion molecules implicated and the potential interference with the purinergic signalling pathway. The effects of ABC on platelet aggregation and platelet-endothelium interactions were evaluated, respectively, with an aggregometer and a flo…

0301 basic medicineBlood PlateletsEndotheliumPlatelet AggregationAnti-HIV AgentsInflammationPharmacologyBiologyProinflammatory cytokine03 medical and health sciences0302 clinical medicinePlatelet Adhesivenessplatelet-endothelium interactionsVirologymedicineHumansPlatelet030212 general & internal medicinePlatelet activationPharmacologyInflammationCell adhesion moleculePurinergic receptorDeoxyguanine NucleotidesThrombosisPurinergic signallingIntercellular Adhesion Molecule-1Platelet ActivationAbacavirNRTIsDideoxynucleosidesCell biologycardiovascular diseasesP-Selectin030104 developmental biologymedicine.anatomical_structureCardiovascular DiseasesPurinesEndothelium Vascularmedicine.symptomSignal TransductionAntiviral research
researchProduct

Bioenergetic Failure in Rat Oligodendrocyte Progenitor Cells Treated with Cerebrospinal Fluid Derived from Multiple Sclerosis Patients

2017

In relapsing-remitting multiple sclerosis (RRMS) subtype, the patient's brain itself is capable of repairing the damage, remyelinating the axon and recovering the neurological function. Cerebrospinal fluid (CSF) is in close proximity with brain parenchyma and contains a host of proteins and other molecules, which influence the cellular physiology, that may balance damage and repair of neurons and glial cells. The purpose of this study was to determine the pathophysiological mechanisms underpinning myelin repair in distinct clinical forms of MS and neuromyelitis optica (NMO) patients by studying the effect of diseased CSF on glucose metabolism and ATP synthesis. A cellular model with primary…

0301 basic medicineCell physiologyglucose metabolismneuromyelitis opticaTransferrin receptorBiologymultiple sclerosiscerebrospinal fluidlcsh:RC321-571myelin repair03 medical and health sciencesCellular and Molecular NeuroscienceMyelin0302 clinical medicineCerebrospinal fluidGene expressionmedicineAxonlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchMultiple sclerosisoligodendrocyte progenitor cellsmedicine.disease3. Good health030104 developmental biologymedicine.anatomical_structureHypoxanthine-guanine phosphoribosyltransferaseImmunologyCancer researchgene expression030217 neurology & neurosurgeryNeuroscienceFrontiers in Cellular Neuroscience
researchProduct

The Guanine-Based Purinergic System: The Tale of An Orphan Neuromodulation.

2016

Guanine-based purines (GBPs) have been recently proposed to be not only metabolic agents but also extracellular signaling molecules that regulate important functions in the central nervous system. In such way, GBPs-mediated neuroprotection, behavioral responses and neuronal plasticity have been broadly described in the literature. However, while a number of these functions (i.e., GBPs neurothophic effects) have been well-established, the molecular mechanisms behind these GBPs-dependent effects are still unknown. Furthermore, no plasma membrane receptors for GBPs have been described so far, thus GBPs are still considered orphan neuromodulators. Interestingly, an intricate and controversial f…

0301 basic medicineCell signalingAdenosineAdenosinaguanine-based purines; guanosine; neuroprotectionReviewBiologySettore BIO/09 - FisiologiaNeuroprotection03 medical and health sciences0302 clinical medicineguanine-based purinespurinergic receptorsmedicineGuanosine triphosphatasePharmacology (medical)ReceptorPharmacologyTrifosfat de guanosinasynaptic plasticityPurinergic receptorAdenosine; Guanine-based purines; Guanosine; Neuroprotection; Purinergic receptors; Synaptic plasticity; Pharmacology; Pharmacology (medical)Adenosine receptorAdenosineNeuromodulation (medicine)guanosine030104 developmental biologyBiochemistryPurinesadenosineSynaptic plasticityneuroprotectionNeurosciencePurinergic receptor030217 neurology & neurosurgeryGuanine-based purinemedicine.drugFrontiers in pharmacology
researchProduct

Visualising G-quadruplex DNA dynamics in live cells by fluorescence lifetime imaging microscopy

2020

Guanine rich regions of oligonucleotides fold into quadruple-stranded structures called G-quadruplexes (G4s). Increasing evidence suggests that these G4 structures form in vivo and play a crucial role in cellular processes. However, their direct observation in live cells remains a challenge. Here we demonstrate that a fluorescent probe (DAOTA-M2) in conjunction with fluorescence lifetime imaging microscopy (FLIM) can identify G4s within nuclei of live and fixed cells. We present a FLIM-based cellular assay to study the interaction of non-fluorescent small molecules with G4s and apply it to a wide range of drug candidates. We also demonstrate that DAOTA-M2 can be used to study G4 stability i…

0301 basic medicineFluorescence-lifetime imaging microscopyIndolesIntravital MicroscopyGuanineScienceGeneral Physics and Astronomy010402 general chemistryG-quadruplex01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health scienceschemistry.chemical_compoundMiceCell Line TumorAnimalsHumans030304 developmental biologyFluorescent Dyes0303 health sciencesMultidisciplinaryChemistryOligonucleotideCellular AssayQDNA HelicasesGeneral ChemistryDNAFibroblastsFluorescenceSmall moleculeChemical biologyFanconi Anemia Complementation Group Proteins0104 chemical sciencesMolecular ImagingG-QuadruplexesDNA helicase activity030104 developmental biologyMicroscopy FluorescenceGene Knockdown TechniquesBiophysicsFluorescent probesMolecular imagingRNA HelicasesNature Communications
researchProduct

Haploinsufficiency of ARFGEF1 is associated with developmental delay, intellectual disability, and epilepsy with variable expressivity

2021

PURPOSE: ADP ribosylation factor guanine nucleotide exchange factors (ARFGEFs) are a family of proteins implicated in cellular trafficking between the Golgi apparatus and the plasma membrane through vesicle formation. Among them is ARFGEF1/BIG1, a protein involved in axon elongation, neurite development, and polarization processes. ARFGEF1 has been previously suggested as a candidate gene for different types of epilepsies, although its implication in human disease has not been well characterized.METHODS: International data sharing, in silico predictions, and in vitro assays with minigene study, western blot analyses, and RNA sequencing.RESULTS: We identified 13 individuals with heterozygous…

0301 basic medicineGeneticsCandidate geneHeterozygoteEpilepsyADP ribosylation factorIn silicoHeterozygote advantageHaploinsufficiency030105 genetics & heredityBiologymedicine.disease03 medical and health sciencesEpilepsy030104 developmental biologyIntellectual DisabilitymedicineGuanine Nucleotide Exchange FactorsHumansGuanine nucleotide exchange factorHaploinsufficiencyGenetics (clinical)MinigeneGenetics in Medicine
researchProduct

Singlet Oxygen Attack on Guanine: Reactivity and Structural Signature within the B-DNA Helix

2016

International audience; Oxidatively generated DNA lesions are numerous and versatile, and have been the subject of intensive research since the discovery of 8-oxoguanine in 1984. Even for this prototypical lesion, the precise mechanism of formation remains elusive due to the inherent difficulties in characterizing high-energy intermediates. We have probed the stability of the guanine endoperoxide in B-DNA as a key intermediate and determined a unique activation free energy of around 6 kcal mol−1 for the formation of the first C−O covalent bond upon the attack of singlet molecular oxygen (1O2) on the central guanine of a solvated 13 base-pair poly(dG-dC), described by means of quantum mechan…

0301 basic medicineGuanineBase pairGuanineMolecular Dynamics Simulation010402 general chemistryPhotochemistry01 natural sciencesCatalysis03 medical and health sciencesMolecular dynamicschemistry.chemical_compoundPolydeoxyribonucleotidesReactivity (chemistry)Base PairingSinglet OxygenChemistrySinglet oxygenOrganic ChemistrySolvationGeneral Chemistry0104 chemical sciences030104 developmental biologyCovalent bondHelixDNA B-FormOxidation-Reduction[CHIM.RADIO]Chemical Sciences/Radiochemistry
researchProduct

Role of the DNA repair glycosylase OGG1 in the activation of murine splenocytes

2017

OGG1 (8-oxoguanine-DNA glycosylase) is the major DNA repair glycosylase removing the premutagenic DNA base modification 8-oxo-7,8-dihydroguanine (8-oxoG) from the genome of mammalian cells. In addition, there is accumulating evidence that OGG1 and its substrate 8-oxoG might function in the regulation of certain genes, which could account for an attenuated immune response observed in Ogg1-/- mice in several settings. Indications for at least two different mechanisms have been obtained. Thus, OGG1 could either act as an ancillary transcription factor cooperating with the lysine-specific demethylase LSD1 or as an activator of small GTPases. Here, we analysed the activation by lipopolysaccaride…

0301 basic medicineGuanineDNA RepairDNA repairp38 mitogen-activated protein kinasesBiologyBiochemistryDNA GlycosylasesMice03 medical and health sciencesAnimalsMolecular BiologyTranscription factorTumor Necrosis Factor-alphaKinaseActivator (genetics)MacrophagesDNACell BiologyBase excision repairMolecular biology030104 developmental biologyGene Expression RegulationDNA glycosylaseTumor necrosis factor alphaSpleenDNA DamageTranscription FactorsDNA Repair
researchProduct

Oxidatively generated base modifications in DNA: Not only carcinogenic risk factor but also regulatory mark?

2016

The generation of DNA modifications in cells is in most cases accidental and associated with detrimental consequences such as increased mutation rates and an elevated risk of malignant transformation. Accordingly, repair enzymes involved in the removal of the modifications have primarily a protective function. Among the well-established exceptions of this rule are 5-methylcytosine and uracil, which are generated in DNA enzymatically under controlled conditions and fulfill important regulatory functions in DNA as epigenetic marks and in antibody diversification, respectively. More recently, considerable evidence has been obtained that also 8-oxo-7,8-dihydroguanine (8-oxoG), a frequent pro-mu…

0301 basic medicineGuanineDNA RepairTranscription GeneticDNA repairCarcinogenesisBiochemistryDNA GlycosylasesEpigenesis Genetic03 medical and health sciencesRisk FactorsPhysiology (medical)NeoplasmsAnimalsGuanine Nucleotide Exchange FactorsHumansProtein–DNA interactionTranscription factor030102 biochemistry & molecular biologybiologyBase excision repairDNAProliferating cell nuclear antigenOxidative Stress030104 developmental biologyHistoneBiochemistryDNA glycosylasebiology.proteinOxidation-ReductionNucleotide excision repairSignal TransductionFree radical biologymedicine
researchProduct