Search results for "hardware"
showing 10 items of 1372 documents
CUSHAW2-GPU: Empowering Faster Gapped Short-Read Alignment Using GPU Computing
2014
We present CUSHAW2-GPU to accelerate the CUSHAW2 algorithm using compute unified device architecture (CUDA)-enabled GPUs. Two critical GPU computing techniques, namely intertask hybrid CPU-GPU parallelism and tile-based Smith-Waterman map backtracking using CUDA, are investigated to facilitate fast alignments. By aligning both simulated and real reads to the human genome, our aligner yields comparable or better performance compared to BWA-SW, Bowtie2, and GEM. Furthermore, CUSHAW2-GPU with a Tesla K20c GPU achieves significant speedups over the multithreaded CUSHAW2, BWA-SW, Bowtie2, and GEM on the 12 cores of a high-end CPU for both single-end and paired-end alignment.
Applying Dynamic Performance Management to Enterprises
2016
This chapter will illustrate two examples of DPM applied to enterprises. Cases will show how DPM can support a learning-oriented approach into the P&C processes of business organizations.
Grid methods and Hilbert space basis for simulations of quantum dynamics
1999
We discuss spatial grid methods adapted to the structure of Hilbert spaces, used to simulate quantum mechanical systems. We review the construction of Finite Basis Representation (FBR) and the Discrete Variable Representation (DVR). A mixed representation (pseudo-spectral method) is constructed through a quadrature relation linking both bases.
A Formal Model for Developing of the self-Diagosing and Self-Repairing 8-Bits Microprocessor, and Its Investigation Using Simulation
1986
Abstract The complete model of functional diagnostics is theoretically described. It specifies the conditions, which must be satisfied if the system to be self-diagnosable. The general principles of constructing self-diagnosable systems are enumerated. The model enables the realization of self-renewal, too. The model has been developed on the basis of the works by Preparata, Metze, Chien (1967) and Hakimi, Amin (1974) . The model contains a method of diagnostics completely separeted from the physical structure of the system. Recent results (Gruber, 1978; Swiatek, 1982) indicate that it is only necessary to know the set of transformations realized by the circuit. The model has been applied t…
Batteries for Aerospace: A Brief Review
2018
This paper presents a brief overview on batteries for aerospace application. In particular, More Electric Aircraft (MEA) and All Electric Aircraft (AEA) concepts are introduced at first, together with their main advantages and drawbacks. Subsequently, opportunities and issues related to the employment of batteries on aircrafts are presented and briefly discussed. Reference is then made to aircraft power system architectures and battery technologies, as well as on the state-of-the-art of battery management systems, state-of-charge and state-of-health estimations, and thermal management.
On-board Energy Consumption Assessment for Symbolic Execution Models on Embedded Devices
2020
Internet of Things (IoT) applications operate in several domains while requiring seamless integration among heterogeneous objects. Regardless of the specific platform and context, IoT applications demand high energy efficiency. Adopting resource-constrained embedded devices for IoT applications means ensuring low power consumption, low maintenance costs and possibly longer battery life. Meeting these requirements is particularly arduous as programmers are not able to monitor the energy consumption of their own software during development or when applications are finally deployed. In this paper, we discuss on-board real-time energy evaluation of both hardware and software during the developm…
Design and Implementation of an Ultra-Low Power Wake-up Radio for Wireless IoT Devices
2018
In this paper, we present the design and prototype implementation of an ultra-low power wake-up radio for wireless IoT devices. The prototyped wake-up radio consumes only 580nA from 3V power supply, covers distance range of up to 55 meters and achieves a sensitivity of -49.5dBm. This wakeup radio module can easily be integrated into wireless IoT devices and thereby reducing the overall power consumption of the battery powered and energy harvesting based devices. The prolonged life time of the devices can reduce the overall costs when deployed in large scale.
Li-ion Battery Modeling and State of Charge Estimation Method Including the Hysteresis Effect
2019
In this paper, a new approach to modeling the hysteresis phenomenon of the open circuit voltage (OCV) of lithium-ion batteries and estimating the battery state of charge (SoC) is presented. A characterization procedure is proposed to identify the battery model parameters, in particular, those related to the hysteresis phenomenon and the transition between charging and discharging conditions. A linearization method is used to obtain a suitable trade-off between the model accuracy and a low computational cost, in order to allow the implementation of SoC estimation on common hardware platforms. The proposed characterization procedure and the model effectiveness for SoC estimation are experime…
Predicting the Batteries' State of Health in Wireless Sensor Networks Applications
2018
[EN] The lifetime of wireless sensor networks deployments depends strongly on the nodes battery state of health (SoH). It is important to detect promptly those motes whose batteries are affected and degraded by ageing, environmental conditions, failures, etc. There are several parameters that can provide significant information of the battery SoH, such as the number of charge/discharge cycles, the internal resistance, voltage, drained current, temperature, etc. The combination of these parameters can be used to generate analytical models capable of predicting the battery SoH. The generation of these models needs a previous process to collect dense data traces with sampled values of the batt…
An over-the-distance wireless battery charger based on RF energy harvesting
2017
An RF powered receiver silicon IC (integrated circuit) for RF energy harvesting is presented as wireless battery charger. This includes an RF-to-DC energy converter specifically designed with a sensitivity of -18.8 dBm and an energy conversion efficiency of â¼45% at 900 MHz with a transmitting power of 0.5 W in free space. Experimental results concerned with remotely battery charging using a complete prototype working in realistic scenarios will be shown.