Search results for "helicates"

showing 4 items of 4 documents

Enantiomerically pure trinuclear helicates via diastereoselective self-assembly and characterization of their redox chemistry.

2014

A tris(bipyridine) ligand 1 with two BINOL (BINOL = 2, 2′-dihydroxy-1, 1′-binaphthyl) groups has been prepared in two enantiomerically pure forms. This ligand undergoes completely diastereoselective self-assembly into D2-symmeteric double-stranded trinuclear helicates upon coordination to copper(I) and silver(I) ions and to D3-symmetric triple-stranded trinuclear helicates upon coordination to copper(II), zinc(II), and iron(II) ions as demonstrated by mass spectrometry, NMR and CD spectroscopy in combination with quantum chemical calculations and X-ray diffraction analysis. According to the calculations, the single diastereomers that are formed during the self-assembly process are strongly …

Circular dichroismStereochemistryLigandDiastereomerchemistry.chemical_elementGeneral ChemistryZincBiochemistryCopperRedoxCatalysisCrystallographyBipyridinechemistry.chemical_compoundColloid and Surface Chemistrychemistrytrinuclear helicates; diastereoselective self-assembly; X-ray diffraction; redox chemistrySelf-assemblyta116Journal of the American Chemical Society
researchProduct

Chasing Weak Forces: Hierarchically Assembled Helicates as a Probe for the Evaluation of the Energetics of Weak Interactions.

2017

London dispersion forces are the weakest interactions between molecules. Because of this, their influence on chemical processes is often low, but can definitely not be ignored, and even becomes important in cases of molecules with large contact surfaces. Hierarchically assembled dinuclear titanium(IV) helicates represent a rare example in which the direct observation of London dispersion forces is possible in solution even in the presence of strong cohesive solvent effects. Hereby, the dispersion forces do not unlimitedly support the formation of the dimeric complexes. Although they have some favorable enthalpic contribution to the dimerization of the monomeric complex units, large flexible…

sondit010405 organic chemistryChemistryStereochemistryDirect observationhelicatesGeneral ChemistryWeak interactioninteractions010402 general chemistry01 natural sciencesBiochemistryLondon dispersion forceCatalysis0104 chemical scienceschemistry.chemical_compoundColloid and Surface ChemistryMonomerContact surfacesChemical physicsweak forcesMoleculeSolvent effectsprobesta116Journal of the American Chemical Society
researchProduct

Coordinatively Unsaturated Lanthanide(III) Helicates: Luminescence Sensors for Adenosine Monophosphate in Aqueous Media

2016

Coordinatively unsaturated double-stranded helicates [(H2 L)2 Eu2 (NO3 )2 (H2 O)4 ](NO3 )4 , [(H2 L)2 Tb2 (H2 O)6 ](NO3 )6 , and [(H2 L)2 Tb2 (H2 O)6 ]Cl6 (H2 L=butanedioicacid-1,4-bis[2-(2-pyridinylmethylene)hydrazide]) are easily obtained by self-assembly from the ligand and the corresponding lanthanide(III) salts. The complexes are characterized by X-ray crystallography showing the helical arrangement of the ligands. Co-ligands at the metal ions can be easily substituted by appropriate anions. A specific luminescence response of AMP in presence of ADP, ATP, and other anions is observed. Specificity is assigned to the perfect size match of AMP to bridge the two metal centers and to replac…

LanthanideCoordination sphereadenosine monophosphateStereochemistryMetal ions in aqueous solutionHydrazide010402 general chemistry01 natural sciencesCatalysisMetalchemistry.chemical_compoundluminescencelanthanidesta116sensingQuenching (fluorescence)ChemistryLigand010405 organic chemistryhelicatesGeneral ChemistryGeneral Medicine0104 chemical sciences3. Good healthCrystallographyvisual_artvisual_art.visual_art_mediumLuminescenceAngewandte Chemie International Edition
researchProduct

Subcomponent self‐assembly of a cyclic tetranuclear Fe(II) helicate in a highly diastereoselective self‐sorting manner

2019

Abstract An enantiomerically pure diamine based on the 4,15‐difunctionalized [2.2]paracyclophane scaffold and 2‐formylpyridine self‐assemble into an optically pure cyclic metallosupramolecular Fe4L6 helicate upon mixing with iron(II) ions in a diastereoselective subcomponent self‐assembly process. The cyclic assembly results from steric strain that prevents the formation of a smaller linear dinuclear triple‐stranded helicate, and hence, leads to the larger strain‐free assembly that fulfils the maximum occupancy rule. Interestingly, use of the racemic diamine also leads to a racemic mixture of the homochiral cyclic helicates as the major product in a highly diastereoselective narcissistic ch…

Circular dichroismSupramolecular chemistry010402 general chemistrychiral self-sorting01 natural sciencesCatalysisSupramolecular ChemistryStereocenterchemistry.chemical_compoundDiaminesupramolekulaarinen kemiacyclic helicates010405 organic chemistryCommunicationOrganic Chemistrymetallo-supramolecular chemistryDiastereomersubcomponent self-assemblyGeneral Chemistryself-assemblyparacyclophanesCommunications3. Good health0104 chemical sciencesCrystallographySelf sortingchemistryRacemic mixtureSelf-assembly[2.2]paracyclophane
researchProduct