Search results for "herbicide"

showing 10 items of 273 documents

Secondary metabolites and eco-friendly techniques for agricultural weed/pest management

2021

In agro-ecosystems, pests (insects, weeds, and other plant’s parasites) compete with crops for edaphic resources, negatively affecting quality and crop yields [1]. Nowadays, synthetic pesticides, easy to apply and accessible to farmers, are the most common and effective methods for pest management [2]. Nevertheless, the negative impact of these chemicals on the environment, human health, and the development of herbicides/pesticides-resistance are shifting the attention to alternative pest control technologies based on natural compounds [3–6]. Therefore, new eco-friendly agronomic techniques and the use of natural or natural-like molecules might represent a valid alternative strategy for pes…

0106 biological sciences0301 basic medicineIntegrated pest managementweed controlmedia_common.quotation_subjectPlant Sciencephytotoxicitynatural herbicide01 natural sciences03 medical and health sciencesmicrobial biomamicrobial respirationQuality (business)bacteriaEcology Evolution Behavior and Systematicsmedia_commonEcologybusiness.industryAgroforestryCrop yieldBotanyEdaphicEnvironmentally friendly030104 developmental biologyn/aEditorialAgricultureQK1-989Environmental sciencefungiWeedbusiness010606 plant biology & botany
researchProduct

Assessment of genetically modified maize 4114 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐NL‐2014‐123)

2018

Abstract Maize 4114 was developed through Agrobacterium tumefaciens‐mediated transformation to provide protection against certain lepidopteran and coleopteran pests by expression of the Cry1F, Cry34Ab1 and Cry35Ab1 proteins derived from Bacillus thuringiensis, and tolerance to the herbicidal active ingredient glufosinate‐ammonium by expression of the PAT protein derived from Streptomyces viridochromogenes. The molecular characterisation data did not identify issues requiring assessment for food/feed safety. None of the compositional, agronomic and phenotypic differences identified between maize 4114 and the non‐genetically modified (GM) comparator(s) required further assessment. There were …

0106 biological sciences4114herbicide toleranceAgrobacteriumCry1F[SDV]Life Sciences [q-bio]Veterinary (miscellaneous)Cry34Ab1Context (language use)4114; Cry1F; Cry34Ab1; Cry35Ab1; GMO; herbicide tolerance; insect-resistant; maize (Zea mays); PAT; Regulation (EC) No 1829/2003TP1-1185Plant Science010501 environmental sciences01 natural sciencesMicrobiologyBacillus thuringiensisinsect‐resistantinsect-resistantTX341-641maize (Zea mays)0105 earth and related environmental sciences2. Zero hungerGenetically modified maizeAnimal healthbiologyNutrition. Foods and food supplyGMObusiness.industryChemical technologyCry35Ab1Regulation (EC) No 1829/2003maize (Zea mays)biology.organism_classificationGenetically modified organismBiotechnologyTransformation (genetics)Scientific Opinion13. Climate actionAnimal Science and ZoologyParasitologybusinessCry 1FPATRegulation (EC) No 1829/2003010606 plant biology & botanyFood SciencePotential toxicity
researchProduct

Control of Erigeron bonariensis with Thymbra capitata, Mentha piperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus Essential Oils

2020

In the search of sustainable and environmentally friendly methods for weed control, there is increasing interest in essential oils (EOs) as an approach to reduce synthetic herbicide use. The phytotoxicity of Thymbra capitata, Mentha piperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus EOs against the noxious weed Erigeron bonariensis were evaluated in pre- and post-emergence assays in greenhouse conditions. The EOs were applied at 2, 4, and 8 &micro

0106 biological sciencesAgricultural IrrigationErigeronPharmaceutical SciencePlant WeedsAsteraceae01 natural sciencesEssential oilAnalytical ChemistrySantolina chamaecyparissusPlantletDrug DiscoveryErigeron bonariensisEucalyptusbiologyNoxious weedMentha piperita04 agricultural and veterinary sciences<i>erigeron bonariensis</i>Weed controlSettore AGR/02 - Agronomia E Coltivazioni ErbaceeHorticultureChemistry (miscellaneous)GerminationEssential oilsMolecular MedicinePhytotoxicityPre-emergenceBOTANICAGerminationArticlelcsh:QD241-441lcsh:Organic chemistryQUIMICA ANALITICAOils VolatilePlant OilsPost-emergencePhysical and Theoretical ChemistryErigeron bonariensiLamiaceaeDose-Response Relationship DrugOrganic Chemistrybiology.organism_classificationSeed germinationNatural herbicideErigeronEucalyptus camaldulensisEmulsifying AgentsCapitata040103 agronomy & agriculture0401 agriculture forestry and fisheriesNatural herbicides010606 plant biology & botany
researchProduct

Herbicidal activity of Thymbra capitata (L.) Cav. essential oil

2020

The bioherbicidal potential of Thymbra capitata (l.) Cav. essential oil (EO) and its main compound carvacrol was investigated. In in vitro assays, the EO blocked the germination and seedling growth of Erigeron canadensis L., Sonchus oleraceus (l.) L., and Chenopodium album L. at 0.125 &micro

0106 biological sciencesAvenaPharmaceutical ScienceIntegrated weed managementSolanum nigrum3101.06 Herbicidas01 natural sciencesAnalytical Chemistrylaw.inventionchemistry.chemical_compoundbioherbicideslawDrug Discovery2302.10 Aceites Esencialesnatural herbicidesCarvacrol0303 health sciencesSetaria verticillatabiologyChenopodium3103.15 Control de MalezasWeed controlSettore AGR/02 - Agronomia E Coltivazioni Erbacee02.- Poner fin al hambre conseguir la seguridad alimentaria y una mejor nutrición y promover la agricultura sostenibleHorticultureChemistry (miscellaneous)Essential oilsintegrated weed managementMolecular Medicineweed controlSettore AGR/13 - Chimica AgrariaBOTANICAcarvacrolPortulacanatural herbicideThymbra capitataessential oilArticlelcsh:QD241-44103 medical and health sciencesBioherbicideslcsh:Organic chemistryCarvacrolOils VolatilePhysical and Theoretical ChemistryAvena fatuaessential oilsEssential oil030304 developmental biologyLamiaceaeHerbicidesOrganic Chemistrybiology.organism_classificationSonchus oleraceuschemistrySeedlingsEchinochloaCapitataNatural herbicides010606 plant biology & botany
researchProduct

Scientific Opinion on application EFSA‐GMO‐BE‐2013‐117 for authorisation of genetically modified maize MON 87427 × MON 89034 × NK603 and subcombinati…

2017

Scientific opinionRequestor: Competent Authority of BelgiumQuestion number: EFSA-Q-2013-00765; In this opinion, the EFSA Panel on Genetically Modified Organisms (GMO Panel) assessed the three-event stack maize MON 87427 9 MON 89034 9 NK603 and its three subcombinations, independently of their origin. The GMO Panel has previously assessed the three single events combined to produce this three-event stack maize and did not identify safety concerns. No new data on the single events, leading to modification of the original conclusions on their safety, were identified. Based on the molecular, agronomic, phenotypic and compositional characteristics, the combination of the single maize events and …

0106 biological sciencesCry1Aherbicide tolerancemaïsVeterinary (miscellaneous)gmo[SDV]Life Sciences [q-bio]MON87427xMON89034xNK603ogmPlant Science010501 environmental sciencesmaizeCP4EPSPS01 natural sciencesMicrobiologyzea maysMON 87427 × MON 89034 × NK603Cry2Ab2CP4 EPSPS0105 earth and related environmental sciences2. Zero hungerCP4 EPSPSCry1A.105indian cornRegulation (EC) No 1829/2003105GMO;maize;herbicide tolerance;insect resistance;CP4 EPSPS;Cry1A.105;Cry2Ab2;Regulation (EC) No 1829/2003;MON 87427 x MON 89034 x NK603MON 87427 9 MON 89034 9 NK603Scientific OpinionRegulation (EC) No1829/2003Animal Science and ZoologyParasitologyinsect resistance010606 plant biology & botanyFood ScienceRegulation (EC) No 1829/2003
researchProduct

The dominance of the herbicide resistance cost in several Arabidopsis thaliana mutant lines

2004

Abstract Resistance evolution depends upon the balance between advantage and disadvantage (cost) conferred in treated and untreated areas. By analyzing morphological characters and simple fitness components, the cost associated with each of eight herbicide resistance alleles (acetolactate synthase, cellulose synthase, and auxin-induced target genes) was studied in the model plant Arabidopsis thaliana. The use of allele-specific PCR to discriminate between heterozygous and homozygous plants was used to provide insights into the dominance of the resistance cost, a parameter rarely described. Morphological characters appear more sensitive than fitness (seed production) because 6 vs. 4 differen…

0106 biological sciencesDNA PlantGenotypeArabidopsisDrug ResistanceDrug resistance[SDV.GEN] Life Sciences [q-bio]/GeneticsGenes Plant01 natural sciences03 medical and health sciencesGene FrequencyArabidopsisGenotypeGeneticsAlleleGeneCrosses GeneticComputingMilieux_MISCELLANEOUSGenes Dominant030304 developmental biologyDominance (genetics)Genetics[SDV.GEN]Life Sciences [q-bio]/Genetics0303 health sciencesAcetolactate synthaseBase SequencebiologyHerbicidesbiology.organism_classificationPhenotypeMutationbiology.proteinUnderdominanceResearch Article010606 plant biology & botany
researchProduct

Phytotoxic Effects of Commercial Eucalyptus citriodora, Lavandula angustifolia, and Pinus sylvestris Essential Oils on Weeds, Crops, and Invasive Spe…

2019

Background: essential oils are well known for their pharmacological effectiveness as well as their repellent, insecticide, and herbicide activities. The emergence of resistant weeds, due to the overuse of synthetic herbicides, makes it necessary to find natural alternatives for weed control. The aim of this study was to evaluate the phytotoxic effects of Eucalyptus citriodora, Lavandula angustifolia, and Pinus sylvestris, three common commercial essential oils, on weeds (Portulaca oleracea, Lolium multiflorum, and Echinochloa crus-galli), food crops (tomato and cucumber), and the invasive species Nicotiana glauca. Methods: to determine herbicidal effects, essential oils were tested at diffe…

0106 biological sciencesE. citriodoraPlant WeedsPharmaceutical Sciencephytotoxicity<i>E. citriodora</i>01 natural sciencesAnalytical Chemistrylaw.inventionlawDrug DiscoveryRadicleGC–MSLavandula angustifoliaEucalyptusbiologyfood and beveragesPinus sylvestris<i>L. angustifolia</i>HorticultureLavandulaChemistry (miscellaneous)GerminationEucalyptus citriodoraMolecular MedicineCrops AgriculturalWeed ControlGerminationL. angustifoliaArticleGas Chromatography-Mass Spectrometrylcsh:QD241-441lcsh:Organic chemistryP. sylvestrisOils VolatilePhysical and Theoretical Chemistryessential oilsEssential oil<i>P. sylvestris</i>HerbicidesfungiOrganic ChemistryLolium multiflorumbiology.organism_classification0104 chemical sciences010404 medicinal & biomolecular chemistrySeedlingsSeedlingIntroduced SpeciesWeed010606 plant biology & botanyMolecules
researchProduct

Use of Plant Water Extracts for Weed Control in Durum Wheat (Triticum turgidum L. Subsp. durum Desf.)

2020

The use of plant water extracts to control weeds is gaining attention in environmentally-friendly agriculture, but the study of the effect that such extracts may exert on the yield of durum wheat is still unexplored. In 2014 and 2016, the herbicidal potential of several plant water extracts was field tested on durum wheat (cv Valbelice). In 2014, extracts obtained from Artemisia arborescens, Rhus coriaria, Lantana camara, Thymus vulgaris, and Euphorbia characias were used, whereas in 2016 only A. arborescens and R. coriaria were tested as &ldquo

0106 biological sciencesEuphorbia characiasLantana camaraPlant water extract01 natural scienceslcsh:AgriculturebioherbicidesCoriariaAllelopathybiologyfungicereal cropslcsh:Sfood and beverages04 agricultural and veterinary sciencesWeed controlArtemisia arborescensbiology.organism_classificationplant water extractsSettore AGR/02 - Agronomia E Coltivazioni ErbaceeHorticultureCereal cropRhus coriariaallelopathy040103 agronomy & agriculture0401 agriculture forestry and fisheriesBioherbicideWeedAgronomy and Crop Science010606 plant biology & botanyweed managementAgronomy
researchProduct

Fitness of backcross six of hybrids between transgenic oilseed rape (Brassica napus) and wild radish (Raphanus raphanistrum

2002

The process of introgression between a transgenic crop modified for better agronomic characters and a wild relative could lead potentially to increased weediness and adaptation to the environment of the wild species. However, the formation of hybrid and hybrid progeny could be associated with functional imbalance and low fitness, which reduces the risk of gene escape and establishment of the wild species in the field. Our work compares the fitness components of parents and different types of backcross in the sixth generation of hybrids between transgenic oilseed rape (Brassica napus, AACC, 2n = 38) resistant to the herbicide glufosinate and wild radish (Raphanus raphanistrum, RrRr, 2n = 18)…

0106 biological sciencesFLUX DE GENEDrug ResistanceBrassicaIntrogressionGenes PlantRaphanus raphanistrum01 natural sciencesRaphanusGene flow03 medical and health scienceschemistry.chemical_compoundMALHERBOLOGIEGenetics[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyInbreeding[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyCOLZAEcology Evolution Behavior and SystematicsComputingMilieux_MISCELLANEOUS030304 developmental biologyHybridGenetics0303 health sciencesbiologyHerbicidesBrassica napusfood and beveragesAMELIORATION DES PLANTESPlants Genetically Modifiedbiology.organism_classificationAgronomyGlufosinatechemistrySeedlingsBackcrossingHybridization GeneticInbreeding010606 plant biology & botany
researchProduct

Adaptive introgression from maize has facilitated the establishment of teosinte as a noxious weed in Europe

2020

Global trade has considerably accelerated biological invasions. The annual tropical teosintes, the closest wild relatives of maize, were recently reported as new agricultural weeds in two European countries, Spain and France. Their prompt settlement under climatic conditions differing drastically from that of their native range indicates rapid genetic evolution. We performed a phenotypic comparison of French and Mexican teosintes under European conditions and showed that only the former could complete their life cycle during maize cropping season. To test the hypothesis that crop-to-wild introgression triggered such rapid adaptation, we used single nucleotide polymorphisms to characterize p…

0106 biological sciencesGermplasmRange (biology)[SDV]Life Sciences [q-bio]NicheAdaptation BiologicalPlant WeedsIntrogressionrapid adaptationBiologyZea mays010603 evolutionary biology01 natural sciencesgenetic introgressionEvolution Molecular03 medical and health sciencesherbicide resistanceGenetic variationCultivarplant invasion030304 developmental biology2. Zero hunger0303 health sciencesMultidisciplinaryHerbicidesNoxious weedfood and beveragesflowering timeBiological Sciences15. Life on landEuropeAgronomy13. Climate actionAdaptationProceedings of the National Academy of Sciences
researchProduct