Search results for "hippocampus"

showing 10 items of 622 documents

Autism Related Neuroligin-4 Knockout Impairs Intracortical Processing but not Sensory Inputs in Mouse Barrel Cortex

2016

Neuroligin-4 (Nlgn4) is a cell adhesion protein that regulates synapse organization and function. Mutations in human NLGN4 are among the causes of autism spectrum disorders. In mouse, Nlgn4 knockout (KO) perturbs GABAergic synaptic transmission and oscillatory activity in hippocampus, and causes social interaction deficits. The complex profile of cellular and circuit changes that are caused by Nlgn4-KO is still only partly understood. Using Nlgn4-KO mice, we found that Nlgn4-KO increases the power in the alpha frequency band of spontaneous network activity in the barrel cortex under urethane anesthesia in vivo. Nlgn4-KO did not affect single-whisker-induced local field potentials, but suppr…

0301 basic medicineCell Adhesion Molecules NeuronalCognitive NeuroscienceHippocampusNeocortexNeuroliginSensory systemIn Vitro TechniquesNeurotransmissionMice03 medical and health sciencesCellular and Molecular NeuroscienceGlutamatergic0302 clinical medicineAnimalsEvoked PotentialsSynapse organizationMice KnockoutNeuronsAfferent PathwaysNeurotransmitter AgentsChemistryBarrel cortexElectric StimulationVoltage-Sensitive Dye Imaging030104 developmental biologyAnimals NewbornVibrissaeExcitatory postsynaptic potentialNerve NetNeuroscience030217 neurology & neurosurgeryCerebral Cortex
researchProduct

Brain Distribution and Modulation of Neuronal Excitability by Indicaxanthin From Opuntia Ficus Indica Administered at Nutritionally-Relevant Amounts

2018

Several studies have recently investigated the role of nutraceuticals in complex pathophysiological processes such as oxidative damages, inflammatory conditions and excitotoxicity. In this regard, the effects of nutraceuticals on basic functions of neuronal cells, such as excitability, are still poorly investigated. For this reason, the possible modulation of neuronal excitability by phytochemicals (PhC) could represent an interesting field of research given that excitotoxicity phenomena are involved in neurodegenerative alterations leading, for example, to Alzheimer's disease. The present study was focused on indicaxanthin from Opuntia ficus indica, a bioactive betalain pigment, with a pro…

0301 basic medicineCerebellumAgingCognitive NeuroscienceExcitotoxicityHippocampusindicaxanthinBiologyHippocampal formationmedicine.disease_causeNeuroprotectionmicroiontophoresisbrain localizationlcsh:RC321-57103 medical and health scienceschemistry.chemical_compound0302 clinical medicineexcitabilitymedicinelcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchnutraceuticalselectrophysiologyCortex (botany)brain localization; electrophysiology; excitability; indicaxanthin; microiontophoresis; neuroprotection; nutraceuticals030104 developmental biologymedicine.anatomical_structurechemistrynervous systemmicroiontophoresineuroprotectionNeuronIndicaxanthinNeuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in Aging Neuroscience
researchProduct

2018

Giant depolarizing potentials (GDPs) represent a typical spontaneous activity pattern in the immature hippocampus. GDPs are mediated by GABAergic and glutamatergic synaptic inputs and their initiation requires an excitatory GABAergic action, which is typical for immature neurons due to their elevated intracellular Cl- concentration ([Cl-]i). Because GABAA receptors are ligand-gated Cl- channels, activation of these receptors can potentially influence [Cl-]i. However, whether the GABAergic activity during GDPs influences [Cl-]i is unclear. To address this question we performed whole-cell and gramicidin-perforated patch-clamp recordings from visually identified CA3 pyramidal neurons in immatu…

0301 basic medicineChemistryGABAA receptorHippocampusAMPA receptorHippocampal formation03 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compound030104 developmental biology0302 clinical medicinenervous systemGiant depolarizing potentialsExcitatory postsynaptic potentialCNQXBiophysicsGABAergic030217 neurology & neurosurgeryFrontiers in Cellular Neuroscience
researchProduct

Environmental Tobacco Smoke During the Early Postnatal Period of Mice Interferes With Brain 18 F-FDG Uptake From Infancy to Early Adulthood – A Longi…

2020

Exposure to environmental tobacco smoke (ETS) is associated with high morbidity and mortality, mainly in childhood. Our aim was to evaluate the effects of postnatal ETS exposure in the brain 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) uptake of mice by positron emission tomography (PET) neuroimaging in a longitudinal study. C57BL/6J mice were exposed to ETS that was generated from 3R4F cigarettes from postnatal day 3 (P3) to P14. PET analyses were performed in male and female mice during infancy (P15), adolescence (P35), and adulthood (P65). We observed that ETS exposure decreased 18F-FDG uptake in the whole brain, both left and right hemispheres, and frontal cortex in both male and female i…

0301 basic medicineCingulate cortexmedicine.medical_specialtyCerebellumpositron emission tomographyglucose metabolismbrainThalamusHippocampusenvironmental tobacco smokeStriatum18F-FDG uptakelcsh:RC321-571Midbrain03 medical and health sciences0302 clinical medicineInternal medicineCortex (anatomy)medicinelcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchBasal forebrainpassive smokeneuroimagingbusiness.industryGeneral Neurosciencelongitudinal studyCÉREBRO030104 developmental biologyEndocrinologymedicine.anatomical_structurebusiness030217 neurology & neurosurgeryNeuroscienceFrontiers in Neuroscience
researchProduct

Artemisinin-treatment in pre-symptomatic APP-PS1 mice increases gephyrin phosphorylation at Ser270: a modification regulating postsynaptic GABAAR den…

2021

Abstract Artemisinins, a group of plant-derived sesquiterpene lactones, are efficient antimalarial agents. They also share anti-inflammatory and anti-viral activities and were considered for treatment of neurodegenerative disorders like Alzheimer’s disease (AD). Additionally, artemisinins bind to gephyrin, the multifunctional scaffold of GABAergic synapses, and modulate inhibitory neurotransmission in vitro. We previously reported an increased expression of gephyrin and GABAA receptors in early pre-symptomatic stages of an AD mouse model (APP-PS1) and in parallel enhanced CDK5-dependent phosphorylation of gephyrin at S270. Here, we studied the effects of artemisinin on gephyrin in the brain…

0301 basic medicineClinical BiochemistryNeurotransmissionInhibitory postsynaptic potentialHippocampusBiochemistryMice03 medical and health sciences0302 clinical medicinePostsynaptic potentialAnimalsPhosphorylationMolecular BiologyCells Culturedgamma-Aminobutyric AcidGephyrinbiologyGABAA receptorChemistryCyclin-dependent kinase 5Membrane ProteinsReceptors GABA-AArtemisininsCell biology030104 developmental biologynervous systemSynapsesbiology.proteinPhosphorylationGABAergicCarrier Proteins030217 neurology & neurosurgeryBiological Chemistry
researchProduct

The NG2 Protein Is Not Required for Glutamatergic Neuron-NG2 Cell Synaptic Signaling.

2014

NG2 glial cells (as from now NG2 cells) are unique in receiving synaptic input from neurons. However, the components regulating formation and maintenance of these neuron–glia synapses remain elusive. The transmembrane protein NG2 has been considered a potential mediator of synapse formation and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) clustering, because it contains 2 extracellular Laminin G/Neurexin/Sex Hormone-Binding Globulin domains, which in neurons are crucial for formation of transsynaptic neuroligin– neurexin complexes. NG2 is connected via Glutamate Receptor-Interacting Protein with GluA2/3-containing AMPARs, thereby possibly mediating receptor clus…

0301 basic medicineCognitive NeuroscienceNeurexinSynaptogenesisGlutamic AcidNeuroliginMice TransgenicBiologyNeurotransmissionHippocampusSynaptic Transmission03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicinePostsynaptic potentialAnimalsReceptors AMPAAntigensNeuronsMembrane Proteins030104 developmental biologynervous systemSynaptic plasticitySynapsesProteoglycansSynaptic signalingNeurosciencePostsynaptic densityNeuroglia030217 neurology & neurosurgeryCerebral cortex (New York, N.Y. : 1991)
researchProduct

Synaptic Phospholipid Signaling Modulates Axon Outgrowth via Glutamate-dependent Ca2+-mediated Molecular Pathways.

2015

Abstract Altered synaptic bioactive lipid signaling has been recently shown to augment neuronal excitation in the hippocampus of adult animals by activation of presynaptic LPA2-receptors leading to increased presynaptic glutamate release. Here, we show that this results in higher postsynaptic Ca2+ levels and in premature onset of spontaneous neuronal activity in the developing entorhinal cortex. Interestingly, increased synchronized neuronal activity led to reduced axon growth velocity of entorhinal neurons which project via the perforant path to the hippocampus. This was due to Ca2+-dependent molecular signaling to the axon affecting stabilization of the actin cytoskeleton. The spontaneous…

0301 basic medicineCognitive NeuroscienceNeuronal OutgrowthHippocampusGlutamic AcidAxon hillockSynaptic Transmission03 medical and health sciencesCellular and Molecular NeuroscienceMice0302 clinical medicinePostsynaptic potentialmedicinePremovement neuronal activityAnimalsbioactive phospholipidsCalcium SignalingAxonearly synchronized activityCells CulturedPhospholipidsChemistryOriginal ArticlesEntorhinal cortexPerforant pathActin cytoskeletonAxonsCell biologyCa2+-signalingentorhinal–hippocampal formation030104 developmental biologymedicine.anatomical_structureaxon outgrowthnervous systemCalcium030217 neurology & neurosurgeryMetabolic Networks and PathwaysCerebral cortex (New York, N.Y. : 1991)
researchProduct

Bumetanide prevents brain trauma-induced depressive-like behavior

2019

AbstractBrain trauma triggers a cascade of deleterious events leading to enhanced incidence of drug resistant epilepsies, depression and cognitive dysfunctions. The underlying mechanisms leading to these alterations are poorly understood and treatment that attenuates those sequels not available. Using controlled-cortical impact (CCI) as experimental model of brain trauma in adult mouse we found a strong suppressive effect of the sodium-potassium-chloride importer (NKCC1) specific antagonist bumetanide on appearance of depression-like behavior. We demonstrate that this alteration in behavior is associated with a block of CCI-induced decrease in parvalbumin-positive interneurons and impairmen…

0301 basic medicineDOWN-REGULATIONpotassium chloride cotransporter 2 (KCC2)[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyHippocampusUP-REGULATION0302 clinical medicineMedicineCOTRANSPORTER KCC2NEURAL STEM-CELLBrain traumaDepression (differential diagnoses)Original Research0303 health sciencesNeurogenesisDepolarizationNeural stem cell3. Good healthADULT HIPPOCAMPAL NEUROGENESISneurogenesis[SDV.SP.PHARMA] Life Sciences [q-bio]/Pharmaceutical sciences/PharmacologydepressionBumetanidemedicine.druginterneuron cell deathpsychiatric diseaseINHIBITIONbumetanidelcsh:RC321-571Cellular and Molecular Neuroscience03 medical and health sciencesINJURYlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryMolecular Biology030304 developmental biologybusiness.industryMechanism (biology)GRANULE CELLSDentate gyrusAntagonist3112 Neurosciences[SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology030104 developmental biologyDENTATE GYRUSDIURETIC BUMETANIDE[SDV.SP.PHARMA]Life Sciences [q-bio]/Pharmaceutical sciences/PharmacologybusinessNeuroscience030217 neurology & neurosurgeryNeuroscience
researchProduct

The activation of NMDA receptors alters the structural dynamics of the spines of hippocampal interneurons

2017

N-Methyl-d-Aspartate receptors (NMDARs) are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play a key role in the structural plasticity of excitatory neurons, but to date little is known about their influence on the remodeling of interneurons. Among hippocampal interneurons, the somatostatin expressing cells in the CA1 stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change their density in response to different stimuli. In order to understand the role of NMDAR activation on the structural dynamics of the spines of somatostatin expressing interneurons in …

0301 basic medicineDendritic spineDendritic SpinesHippocampusHippocampal formationBiologyHippocampusReceptors N-Methyl-D-Aspartate03 medical and health sciences0302 clinical medicineInterneuronsAnimalsReceptorCells CulturedMice KnockoutPyramidal Cellsmusculoskeletal neural and ocular physiologyGeneral NeuroscienceLong-term potentiationSpine030104 developmental biologySomatostatinnervous systemExcitatory postsynaptic potentialNMDA receptorSomatostatinNeuroscience030217 neurology & neurosurgeryNeuroscience Letters
researchProduct

Alterations in Tau Protein Level and Phosphorylation State in the Brain of the Autistic-Like Rats Induced by Prenatal Exposure to Valproic Acid

2021

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficient social interaction and communication besides repetitive, stereotyped behaviours. A characteristic feature of ASD is altered dendritic spine density and morphology associated with synaptic plasticity disturbances. Since microtubules (MTs) regulate dendritic spine morphology and play an important role in spine development and plasticity the aim of the present study was to investigate the alterations in the content of neuronal α/β-tubulin and Tau protein level as well as phosphorylation state in the valproic acid (VPA)-induced rat model of autism. Our results indicated that maternal exposure to VPA indu…

0301 basic medicineDendritic spineHippocampuslcsh:Chemistry0302 clinical medicinePregnancyTubulinPhosphorylationlcsh:QH301-705.5SpectroscopyValproic AcidbiologyERK1/2Chemistryautism spectrum disorders (ASD)valproic acid (VPA)BrainGeneral MedicineImmunohistochemistryComputer Science Applicationsmedicine.anatomical_structureCerebral cortexMaternal ExposurePrenatal Exposure Delayed EffectsFemaleDisease Susceptibilitymedicine.drugSignal Transductionmedicine.medical_specialtyCDK5Tau proteintau ProteinsCatalysisArticleInorganic Chemistry03 medical and health sciencesInternal medicinemental disordersmedicineAnimalsPhysical and Theoretical ChemistryAutistic DisorderMolecular BiologyCyclin-dependent kinase 5GSK-3βValproic AcidOrganic Chemistryα/β-tubulinRatsEnzyme Activation030104 developmental biologyEndocrinologylcsh:Biology (General)lcsh:QD1-999MAP-TauChromatolysisSynaptic plasticitybiology.proteinAkt/mTOR signalling030217 neurology & neurosurgeryBiomarkersInternational Journal of Molecular Sciences
researchProduct