Search results for "homeobox"

showing 10 items of 117 documents

EphrinB2 repression through ZEB2 mediates tumour invasion and anti-angiogenic resistance.

2016

Diffuse invasion of the surrounding brain parenchyma is a major obstacle in the treatment of gliomas with various therapeutics, including anti-angiogenic agents. Here we identify the epi-/genetic and microenvironmental downregulation of ephrinB2 as a crucial step that promotes tumour invasion by abrogation of repulsive signals. We demonstrate that ephrinB2 is downregulated in human gliomas as a consequence of promoter hypermethylation and gene deletion. Consistently, genetic deletion of ephrinB2 in a murine high-grade glioma model increases invasion. Importantly, ephrinB2 gene silencing is complemented by a hypoxia-induced transcriptional repression. Mechanistically, hypoxia-inducible facto…

0301 basic medicineCell signalingScienceGeneral Physics and AstronomyRepressorDown-RegulationAngiogenesis InhibitorsEphrin-B2BiologyGeneral Biochemistry Genetics and Molecular BiologyArticleNeovascularization03 medical and health sciencesDownregulation and upregulationddc:570GliomamedicineGene silencingAnimalsHumansNeoplasm InvasivenessPsychological repressionZinc Finger E-box Binding Homeobox 2Regulation of gene expressionMice KnockoutMultidisciplinaryNeovascularization PathologicQGeneral ChemistryGliomamedicine.diseaseHypoxia-Inducible Factor 1 alpha SubunitXenograft Model Antitumor AssaysCell HypoxiaCell biologyUp-RegulationBevacizumabGene Expression Regulation NeoplasticMice Inbred C57BL030104 developmental biologyDrug Resistance Neoplasmmedicine.symptomNature communications
researchProduct

The Drosophila Hox gene Ultrabithorax acts both in muscles and motoneurons to orchestrate formation of specific neuromuscular connections

2016

Hox genes are known to specify motoneuron pools in the developing vertebrate spinal cord and to control motoneuronal targeting in several species. However, the mechanisms controlling axial diversification of muscle innervation patterns are still largely unknown. We present data showing that the Drosophila Hox gene Ultrabithorax (Ubx) acts in the late embryo to establish target specificity of ventrally projecting RP motoneurons. In abdominal segments A2 to A7, RP motoneurons innervate the ventrolateral muscles VL1-4, with VL1 and VL2 being innervated in a Wnt4-dependent manner. In Ubx mutants, these motoneurons fail to make correct contacts with muscle VL1, a phenotype partially resembling t…

0301 basic medicineCell typeEmbryo Nonmammaliananimal structuresNeuromuscular JunctionGenes InsectMuscle DevelopmentNeuromuscular junctionAnimals Genetically ModifiedHox genes03 medical and health sciencesWNT4MorphogenesismedicineAnimalsDrosophila ProteinsHox geneWnt Signaling PathwayMolecular BiologyTranscription factorUltrabithoraxHomeodomain ProteinsMotor NeuronsGeneticsbiologyMusclesmusculoskeletal neural and ocular physiologyfungiGenes HomeoboxGene Expression Regulation Developmentalbiology.organism_classificationMuscle innervationSegmental patterningCell biologyMotoneuronsDrosophila melanogaster030104 developmental biologymedicine.anatomical_structurenervous system209embryonic structuresDrosophilaWnt signalling pathwayDrosophila melanogasterDrosophila ProteinTranscription FactorsResearch ArticleDevelopmental BiologyDevelopment
researchProduct

Differentiation and characterization of rat adipose tissue mesenchymal stem cells into endothelial-like cells

2018

In this study, mesenchymal stem cells were isolated from rat adipose tissue (AD-MSCs) to characterize and differentiate them into endothelial-like cells. AD-MSCs were isolated by mechanical and enzymatic treatments, and their identity was verified by colony-forming units (CFU) test and by differentiation into cells of mesodermal lineages. The endothelial differentiation was induced by plating another aliquot of cells in EGM-2 medium, enriched with specific endothelial growth factors. Five subcultures were performed. The expression of stemness genes (OCT4, SOX2 and NANOG) was investigated. The presence of CD90 and the absence of the CD45 were evaluated by flow cytometry. The endothelial-like…

0301 basic medicineCellular differentiationSettore VET/09 - Clinica Chirurgica VeterinariaSettore BIO/13 - Biologia Applicataimmunophenotypical analysiCell DifferentiationNanog Homeobox ProteinGeneral MedicineCadherinsFlow CytometryUp-RegulationPlatelet Endothelial Cell Adhesion Molecule-1Endothelial stem cellDrug CombinationsAdipose Tissueembryonic structuresVeterinary (all)ProteoglycansCollagenStem cellHomeobox protein NANOGadipose-derived mesenchymal stem cellDown-RegulationCD146 AntigenBiology03 medical and health sciencesMatrigel assaySOX2Antigens CDAdipose-derived mesenchymal stem cellsAnimalsEndothelial cells differentiationRats WistarImmunophenotypical analysisMatrigelGeneral VeterinaryGene Expression ProfilingSOXB1 Transcription FactorsMesenchymal stem cellEndothelial CellsMesenchymal Stem Cells3T3-L1Molecular biologyAdipose-derived mesenchymal stem cells; Endothelial cells differentiation; Gene expression; Immunophenotypical analysis; Matrigel assay; Rat; Veterinary (all)Culture MediaRats030104 developmental biologyadipose-derived mesenchymal stem cells; endothelial cells differentiation; gene expression; immunophenotypical analysis; matrigel assay; ratLeukocyte Common AntigensThy-1 AntigensRatLamininGene expressionOctamer Transcription Factor-3
researchProduct

Sema3a plays a role in the pathogenesis of CHARGE syndrome

2018

CHARGE syndrome is an autosomal dominant malformation disorder caused by heterozygous loss of function mutations in the chromatin remodeler CHD7. Chd7 regulates the expression of Sema3a, which also contributes to the pathogenesis of Kallmann syndrome, a heterogeneous condition with the typical features hypogonadotropic hypogonadism and an impaired sense of smell. Both features are common in CHARGE syndrome suggesting that SEMA3A may provide a genetic link between these syndromes. Indeed, we find evidence that SEMA3A plays a role in the pathogenesis of CHARGE syndrome. First, Chd7 is enriched at the Sema3a promotor in neural crest cells and loss of function of Chd7 inhibits Sema3a expression…

0301 basic medicineEmbryo NonmammalianKallmann syndromePHENOTYPIC SPECTRUMmedicine.disease_causeSeverity of Illness IndexEpigenesis GeneticPathogenesisAXON GUIDANCECHD7CHARGE syndromeXenopus laevis0302 clinical medicineHYPOGONADOTROPIC HYPOGONADISMPromoter Regions GeneticGenetics (clinical)GeneticsMutationGeneral MedicinePhenotypeDNA-Binding ProteinsNEURAL CREST CELLSNeural CrestHomeobox Protein Nkx-2.5MIGRATIONBiology03 medical and health sciencesHypogonadotropic hypogonadismKALLMANN-SYNDROMEGeneticsmedicineAnimalsHumansEpigeneticsSHORT STATUREMolecular BiologyLoss functionMUTATIONSGenetic Complementation TestDNA HelicasesSemaphorin-3AKallmann Syndromemedicine.diseaseDisease Models Animal030104 developmental biologyHEK293 CellsXENOPUS-EMBRYOSMutationCHARGE Syndrome030217 neurology & neurosurgery
researchProduct

Retinal homeobox promotes cell growth, proliferation and survival of mushroom body neuroblasts in the Drosophila brain.

2016

Abstract The Drosophila mushroom bodies, centers of olfactory learning and memory in the fly ‘forebrain’, develop from a set of neural stem cells (neuroblasts) that generate a large number of Kenyon cells (KCs) during sustained cell divisions from embryonic to late pupal stage. We show that retinal homeobox ( rx ), encoding for an evolutionarily conserved transcription factor, is required for proper development of the mushroom bodies. Throughout development rx is expressed in mushroom body neuroblasts (MBNBs), their ganglion mother cells (MB-GMCs) and young KCs. In the absence of rx function, MBNBs form correctly but exhibit a reduction in cell size and mitotic activity, whereas overexpress…

0301 basic medicineEmbryologyanimal structuresNerve Tissue ProteinsBiologyRetina03 medical and health sciencesNeuroblastNeural Stem CellsAnimalsDrosophila ProteinsMitosisMushroom BodiesCell ProliferationGanglion CystsHomeodomain ProteinsNeuronsCell growthfungiCell CycleBrainNuclear ProteinsAnatomyEmbryonic stem cellNeural stem cellCell biologyRepressor Proteins030104 developmental biologyDrosophila melanogasterLarvaMushroom bodiesForebrainHomeoboxDevelopmental BiologyTranscription FactorsMechanisms of development
researchProduct

Diversification of spatiotemporal expression and copy number variation of the echinoid hbox12/pmar1/micro1 multigene family

2017

Changes occurring during evolution in the cis-regulatory landscapes of individual members of multigene families might impart diversification in their spatiotemporal expression and function. The archetypal member of the echinoid hbox12/pmar1/micro1 family is hbox12-a, a homeobox-containing gene expressed exclusively by dorsal blastomeres, where it governs the dorsal/ventral gene regulatory network during embryogenesis of the sea urchin Paracentrotus lividus. Here we describe the inventory of the hbox12/pmar1/micro1 genes in P. lividus, highlighting that gene copy number variation occurs across individual sea urchins of the same species. We show that the various hbox12/pmar1/micro1 genes grou…

0301 basic medicineEvolutionary GeneticsEmbryologyGene regulatory networklcsh:MedicineGene ExpressionMedicine (all); Biochemistry Genetics and Molecular Biology (all); Agricultural and Biological Sciences (all)Database and Informatics MethodsGene duplicationGene Regulatory NetworksCopy-number variationlcsh:ScienceSea urchinPhylogenyMultidisciplinarybiologyPhylogenetic treeMedicine (all)Genes HomeoboxGene Expression Regulation DevelopmentalAnimal ModelsGenomicsExperimental Organism SystemsMultigene FamilySequence AnalysisResearch ArticleEchinodermsDNA Copy Number VariationsBioinformaticsDNA transcriptionZoologySettore BIO/11 - Biologia MolecolareResearch and Analysis MethodsParacentrotus lividus03 medical and health sciencesSequence Motif Analysisbiology.animalGeneticsGene familyAnimalsGeneEvolutionary BiologyBiochemistry Genetics and Molecular Biology (all)lcsh:REmbryosOrganismsBiology and Life SciencesComputational Biologybiology.organism_classificationGenome AnalysisGenomic LibrariesInvertebrates030104 developmental biologyAgricultural and Biological Sciences (all)Evolutionary biologySea Urchinslcsh:QSequence AlignmentDevelopmental Biology
researchProduct

Telomerase and pluripotency factors jointly regulate stemness in pancreatic cancer stem cells

2021

© 2021 by the authors.

0301 basic medicineHomeobox protein NANOGCancer ResearchTelomerasePancreatic neoplasmsMedicinaBiologyStammzelleArticle03 medical and health sciences0302 clinical medicineSOX2Cancer stem cellPancreatic cancermedicineddc:610BauchspeicheldrüsenkrebsStemnessTelomeraseRC254-282Telomere lengthPancreas; CancerCancer stem cellsNeoplastic stem cellsCancer stem cells; Pancreatic cancer; Self-renewal; Stemness; Telomerase; Telomere lengthNeoplasms. Tumors. Oncology. Including cancer and carcinogensPancreatic cancermedicine.disease3. Good healthTelomere030104 developmental biologyOncologyKLF4030220 oncology & carcinogenesisCancer researchSelf-renewalStem cellDDC 610 / Medicine & health
researchProduct

Donor age and long-term culture do not negatively influence the stem potential of limbal fibroblast-like stem cells

2016

AbstractBackgroundIn regenerative medicine the maintenance of stem cell properties is of crucial importance. Ageing is considered a cause of reduced stemness capability. The limbus is a stem niche of easy access and harbors two stem cell populations: epithelial stem cells and fibroblast-like stem cells. Our aim was to investigate whether donor age and/or long-term culture have any influence on stem cell marker expression and the profiles in the fibroblast-like stem cell population.MethodsFibroblast-like stem cells were isolated and digested from 25 limbus samples of normal human corneo-scleral rings and long-term cultures were obtained. SSEA4 expression and sphere-forming capability were ev…

0301 basic medicineHomeobox protein NANOGCellular differentiationMedicine (miscellaneous)BiologyStem cell markerBiochemistry Genetics and Molecular Biology (miscellaneous)Settore MED/13 - Endocrinologia03 medical and health sciencesAdult stem cell pluripotency; Fibroblast-like stem cells; Limbal stem cells; Proteomic profile; Regenerative medicineLimbal stem cellStem cell transplantation for articular cartilage repairAdult stem cell pluripotencyInduced stem cellsResearchFibroblast-like stem cellProteomic profileCell BiologyCell biologyEndothelial stem cell030104 developmental biologyRegenerative medicineMolecular MedicineLimbal stem cellsStem cellFibroblast-like stem cellsAdult stem cellStem Cell Research & Therapy
researchProduct

The DNA methylation profile of human spermatogonia at single-cell- and single-allele-resolution refutes its role in spermatogonial stem cell function…

2019

Human spermatogonial stem cells (hSSCs) have potential in fertility preservation of prepubertal boys or in treatment of male adults suffering from meiotic arrest. Prior to therapeutic application, in vitro propagation of rare hSSCs is mandatory. As the published data points to epigenetic alterations in long-term cell culture of spermatogonia (SPG), an initial characterisation of their DNA methylation state is important. Testicular biopsies from five adult normogonadotropic patients were converted into aggregate-free cell suspensions. FGFR3-positive (FGFR3+) SPG, resembling a very early stem cell state, were labelled with magnetic beads and isolated in addition to unlabelled SPG (FGFR3-). DN…

0301 basic medicineHomeobox protein NANOGMaleEmbryologyBiologyEpigenesis Genetic03 medical and health sciences0302 clinical medicineGeneticsmedicineHumansReceptor Fibroblast Growth Factor Type 3EpigeneticsSpermatogenesisMolecular BiologyAllelesMEG3030219 obstetrics & reproductive medicineKCNQ1OT1Stem CellsObstetrics and GynecologyCell DifferentiationCell BiologyMethylationDNA MethylationMolecular biologySpermatozoaSpermatogonia030104 developmental biologymedicine.anatomical_structureReproductive MedicineDNA methylationGenomic imprintingGerm cellDevelopmental BiologyMolecular human reproduction
researchProduct

Let-7d miRNA Shows Both Antioncogenic and Oncogenic Functions in Osteosarcoma-Derived 3AB-OS Cancer Stem Cells

2016

Osteosarcoma (OS), an aggressive highly invasive and metastatic bone-malignancy, shows therapy resistance and recurrence, two features that likely depend on cancer stem cells (CSCs), which hold both self-renewing and malignant potential. So, effective anticancer therapies against OS should specifically target and destroy CSCs. We previously found that the let-7d microRNA was downregulated in the 3AB-OS-CSCs, derived from the human OS-MG63 cells. Here, we aimed to assess whether let-7d modulation affected tumorigenic and stemness properties of these OS-CSCs. We found that let-7d-overexpression reduced cell proliferation by decreasing CCND2 and E2F2 cell-cycle-activators and increasing p21 an…

0301 basic medicineHomeobox protein NANOGPhysiologyClinical BiochemistryCell BiologyCell cycleBiologymedicine.diseaseBioinformaticsCXCR403 medical and health sciences030104 developmental biologySOX2Cancer stem cellmicroRNAmedicineCancer researchOsteosarcomaEpithelial–mesenchymal transitionJournal of Cellular Physiology
researchProduct