6533b854fe1ef96bd12adf34
RESEARCH PRODUCT
The DNA methylation profile of human spermatogonia at single-cell- and single-allele-resolution refutes its role in spermatogonial stem cell function and germ cell differentiation.
Andrea SalzbrunnUlrich ZechnerAndrej-nikolai SpiessDesiree Lucia Fend-guellaStefan DiederichNady El HajjWolfgang SchulzeKathrein Von KopylowThomas HaafMatthias Linkesubject
0301 basic medicineHomeobox protein NANOGMaleEmbryologyBiologyEpigenesis Genetic03 medical and health sciences0302 clinical medicineGeneticsmedicineHumansReceptor Fibroblast Growth Factor Type 3EpigeneticsSpermatogenesisMolecular BiologyAllelesMEG3030219 obstetrics & reproductive medicineKCNQ1OT1Stem CellsObstetrics and GynecologyCell DifferentiationCell BiologyMethylationDNA MethylationMolecular biologySpermatozoaSpermatogonia030104 developmental biologymedicine.anatomical_structureReproductive MedicineDNA methylationGenomic imprintingGerm cellDevelopmental Biologydescription
Human spermatogonial stem cells (hSSCs) have potential in fertility preservation of prepubertal boys or in treatment of male adults suffering from meiotic arrest. Prior to therapeutic application, in vitro propagation of rare hSSCs is mandatory. As the published data points to epigenetic alterations in long-term cell culture of spermatogonia (SPG), an initial characterisation of their DNA methylation state is important. Testicular biopsies from five adult normogonadotropic patients were converted into aggregate-free cell suspensions. FGFR3-positive (FGFR3+) SPG, resembling a very early stem cell state, were labelled with magnetic beads and isolated in addition to unlabelled SPG (FGFR3-). DNA methylation was assessed by limiting dilution bisulfite pyrosequencing for paternally imprinted (H19 and MEG3), maternally imprinted (KCNQ1OT1, PEG3, and SNRPN), pluripotency (POU5F1/OCT4 and NANOG), and spermatogonial/hSSC marker (FGFR3, GFRA1, PLZF, and L1TD1) genes on either single cells or pools of 10 cells. Both spermatogonial subpopulations exhibited a methylation pattern largely equivalent to sperm, with hypomethylation of hSSC marker and maternally imprinted genes and hypermethylation of pluripotency and paternally imprinted genes. Interestingly, we detected fine differences between the two spermatogonial subpopulations, which were reflected by an inverse methylation pattern of imprinted genes, i.e. decreasing methylation in hypomethylated genes and increasing methylation in hypermethylated genes, from FGFR3+ through FGFR3- SPG to sperm. Limitations of this study are due to it not being performed on a genome-wide level and being based on previously published regulatory gene regions. However, the concordance of DNA methylation between SPG and sperm implies that hSSC regulation and germ cell differentiation do not occur at the DNA methylation level.
year | journal | country | edition | language |
---|---|---|---|---|
2019-03-20 | Molecular human reproduction |