Search results for "hydrodynamic"

showing 10 items of 530 documents

Linking Small-scale Solar Wind Properties with Large-scale Coronal Source Regions through Joint Parker Solar Probe–Metis/Solar Orbiter Observations

2022

Abstract The solar wind measured in situ by Parker Solar Probe in the very inner heliosphere is studied in combination with the remote-sensing observation of the coronal source region provided by the METIS coronagraph aboard Solar Orbiter. The coronal outflows observed near the ecliptic by Metis on 2021 January 17 at 16:30 UT, between 3.5 and 6.3 R ⊙ above the eastern solar limb, can be associated with the streams sampled by PSP at 0.11 and 0.26 au from the Sun, in two time intervals almost 5 days apart. The two plasma flows come from two distinct source regions, characterized by different magnetic field polarity and intensity at the coronal base. It follows that both the global and local p…

Magnetohydrodynamics (694)Settore FIS/05 - Astronomia E AstrofisicaAstronomi astrofysik och kosmologiSpace and Planetary ScienceSolar corona (1483)Space plasmas (1544)Solar wind (1534)Interplanetary turbulence (830)Astronomy Astrophysics and CosmologyAstronomy and AstrophysicsAlfven waves (23)Heliosphere (711)
researchProduct

Joule heating and the thermal evolution of old neutron stars

1998

We consider Joule heating caused by dissipation of the magnetic field in the neutron star crust. This mechanism may be efficient in maintaining a relatively high surface temperature in very old neutron stars. Calculations of the thermal evolution show that, at the late evolutionary stage ($t \geq 10$ Myr), the luminosity of the neutron star is approximately equal to the energy released due to the field dissipation and is practically independent of the atmosphere models. At this stage, the surface temperature can be of the order of $3 \times 10^{4} - 10^{5}$K. Joule heating can maintain this high temperature during extremely long time ($\geq 100$ Myr), comparable with the decay time of the m…

PhysicsField (physics)Astrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsDissipationAstrophysicsLuminosityMagnetic fieldNeutron starSpace and Planetary ScienceThermalAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsMagnetohydrodynamicsJoule heatingAstrophysics::Galaxy Astrophysics
researchProduct

Towards modelling the central engine of short GRBs

2011

Numerical relativity simulations of non-vacuum spacetimes have reached a status where a complete description of the inspiral, merger and post-merger stages of the late evolution of close binary neutron systems is possible. Determining the properties of the black-hole-torus system produced in such an event is a key aspect to understand the central engine of short-hard gamma-ray bursts (sGRBs). Of the many properties characterizing the torus, the total rest-mass is the most important one, since it is the torus' binding energy which can be tapped to extract the large amount of energy necessary to power the sGRB emission. In addition, the rest-mass density and angular momentum distribution in t…

PhysicsHistoryAngular momentumAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryAstronomyTorusAstrophysicsComputer Science ApplicationsEducationBlack holeStarsNeutron starNumerical relativityTheory of relativitymagnetohydrodynamics binary neutron stars gravitational waves
researchProduct

Hydrodynamic simulations of the shock-cloud interaction in the Vela supernova remnant

2005

hydrodynamics SNR shocks modeling
researchProduct

A Divergence-Free High-Resolution Code for MHD

2001

We describe a 2.5D numerical code to solve the equations of ideal magnetohydrodynamics (MHD). The numerical code, based on high-resolution shock-capturing (HRSC) techniques, solves the equations written in conservation form and computes the numerical fluxes using a linearized Riemann solver. A special procedure is used to force the conservation of magnetic flux along the time.

Physicssymbols.namesakeIdeal (set theory)Internal energyCode (cryptography)symbolsApplied mathematicsMagnetohydrodynamicsDivergence (statistics)Conservation formMagnetic fluxRiemann solver
researchProduct

Measuring the electron temperatures of coronal mass ejections with future space-based multi-channel coronagraphs: a numerical test

2018

Context. The determination from coronagraphic observations of physical parameters of the plasma embedded in coronal mass ejections (CMEs) is of crucial importance for our understanding of the origin and evolution of these phenomena. Aims. The aim of this work is to perform the first ever numerical simulations of a CME as it will be observed by future two-channel (visible light VL and UV Ly-α) coronagraphs, such as the Metis instrument on-board ESA-Solar Orbiter mission, or any other future coronagraphs with the same spectral band-passes. These simulations are then used to test and optimize the plasma diagnostic techniques to be applied to future observations of CMEs. Methods. The CME diagno…

010504 meteorology & atmospheric sciencesSun: coronal mass ejections (CMEs)Plasma parametersT-NDASContext (language use)Astrophysics01 natural sciencessymbols.namesakeMethods: data analysis0103 physical sciencesRadiative transferCoronal mass ejectionAstrophysics::Solar and Stellar AstrophysicsQB Astronomydata analysis [Methods]010303 astronomy & astrophysicsQCQB0105 earth and related environmental sciencesPhysicsUV radiation [Sun]numerical [Methods]Methods: numericalAstronomy and AstrophysicsPlasmaSun: UV radiationPolarization (waves)coronal mass ejections (CMEs) [Sun]Computational physicsQC PhysicsPlasmasSpace and Planetary SciencePhysics::Space PhysicssymbolsMagnetohydrodynamicsDoppler effectAstronomy & Astrophysics
researchProduct

Highlighting numerical insights of an efficient SPH method

2018

Abstract In this paper we focus on two sources of enhancement in accuracy and computational demanding in approximating a function and its derivatives by means of the Smoothed Particle Hydrodynamics method. The approximating power of the standard method is perceived to be poor and improvements can be gained making use of the Taylor series expansion of the kernel approximation of the function and its derivatives. The modified formulation is appealing providing more accurate results of the function and its derivatives simultaneously without changing the kernel function adopted in the computation. The request for greater accuracy needs kernel function derivatives with order up to the desidered …

Computer scienceApplied MathematicsGaussianComputation010103 numerical & computational mathematicsFunction (mathematics)01 natural sciences010101 applied mathematicsSmoothed-particle hydrodynamicsComputational Mathematicssymbols.namesakeSettore MAT/08 - Analisi NumericaKernel based methods Smoothed Particle Hydrodynamics Accuracy Convergence Improved fast Gaussian transform.Convergence (routing)symbolsTaylor seriesGaussian function0101 mathematicsFocus (optics)Algorithm
researchProduct

Numerical Simulations of Jets from Active Galactic Nuclei

2019

Numerical simulations have been playing a crucial role in the understanding of jets from active galactic nuclei (AGN) since the advent of the first theoretical models for the inflation of giant double radio galaxies by continuous injection in the late 1970s. In the almost four decades of numerical jet research, the complexity and physical detail of simulations, based mainly on a hydrodynamical/magneto-hydrodynamical description of the jet plasma, have been increasing with the pace of the advance in theoretical models, computational tools and numerical methods. The present review summarizes the status of the numerical simulations of jets from AGNs, from the formation region in the neighborho…

PhysicsActive galactic nucleus010308 nuclear & particles physicsRadio galaxyplasma physicslcsh:AstronomyNumerical analysisAstrophysics::High Energy Astrophysical PhenomenaTheoretical modelsAstronomy and AstrophysicsAstrophysicsPlasmaAstrophysics::Cosmology and Extragalactic Astrophysics01 natural scienceslcsh:QB1-991Astrophysical jetmagneto-hydrodynamics0103 physical sciencesactive galactic nucleinumerical methodsMagnetohydrodynamics010303 astronomy & astrophysicsPhenomenology (particle physics)Astrophysics::Galaxy Astrophysicsrelativistic jetsGalaxies
researchProduct

First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring

2019

The Event Horizon Telescope (EHT) has mapped the central compact radio source of the elliptical galaxy M87 at 1.3 mm with unprecedented angular resolution. Here we consider the physical implications of the asymmetric ring seen in the 2017 EHT data. To this end, we construct a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by general relativistic ray tracing. We compare the observed visibilities with this library and confirm that the asymmetric ring is consistent with earlier predictions of strong gravitational lensing of synchrotron emission from a hot plasma orbiting near the black hole event horizon. The ring rad…

Magnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencesindividual (M87) [galaxies]Event horizongalaxies: jetAstronomyStrong gravitational lensingblack hole physicsjets [galaxies]galaxies: individualAstrophysicsaccretion accretion disk01 natural sciencesGeneral Relativity and Quantum CosmologyGalaxies: individual (M87)accretion010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsaccretion accretion disksaccretion diskshigh angular resolution [techniques]Accretion disks(MHD)Astrophysics - High Energy Astrophysical PhenomenaGeneral relativityAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Compact stargalaxies: individual: M87magnetohydrodynamics (MHD)Techniques: high angular resolutionGeneral Relativity and Quantum Cosmology0103 physical sciences(M87)0105 earth and related environmental sciencesEvent Horizon TelescopeSupermassive black holeAstronomy and AstrophysicsBlack hole physicsAstrophysics - Astrophysics of Galaxiesblack hole physicBlack holeRotating black holeSpace and Planetary Sciencemagnetohydrodynamics: MHDGalaxies: jetsAstrophysics of Galaxies (astro-ph.GA)magnetohydrodynamics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Hydrodynamism and its influence on the reproductive condition of the edible sea urchin Paracentrotus lividus

2013

Despite the large body of work published in the last two decades on the reproduction of the sea urchin Paracentrotus lividus, the reproductive aspects linked to hydrodynamic conditions and their influence on gonad production remain poorly understood. The present paper aims to evaluate the effect of hydrodynamism on the reproductive cycle of P. lividus. Variability in the gonadosomatic index (GSI) of P. lividus was estimated seasonally from 2007 to 2008 at two shallow sub-littoral flat basaltic areas at Ustica Island (Western Mediterranean). GSI was higher in the sites characterized by low hydrodynamism than in those with high hydrodynamism. Results also suggest a possible role for hydrodyna…

Mediterranean climateSettore BIO/07 - Ecologiafood.ingredientPopulation dynamicsmedia_common.quotation_subjectAquatic ScienceOceanographyPopulation densityParacentrotus lividusReproductive cycleMediterranean seafoodbiology.animalParacentrotusMediterranean SeaWater MovementsAnimalsSea urchinSea urchinsmedia_commonPopulation DensitybiologyEcologyReproductionHydrodynamismGeneral Medicinebiology.organism_classificationPollutionGonadosomatic IndexParacentrotus lividus; Population dynamicsParacentrotus lividusGonadosomatic indexHydrodynamicsParacentrotusReproductionParacentrotus lividu
researchProduct