Search results for "hydrogel"

showing 10 items of 373 documents

In Situ, Light-Guided Axon Growth on Biomaterials via Photoactivatable Laminin Peptidomimetic IK(HANBP)VAV

2018

The ability to guide the growth of neurites is relevant for reconstructing neural networks and for nerve tissue regeneration. Here, a biofunctional hydrogel that allows light-based directional control of axon growth in situ is presented. The gel is covalently modified with a photoactivatable derivative of the short laminin peptidomimetic IKVAV. This adhesive peptide contains the photoremovable group 2-(4′-amino-4-nitro-[1,1′-biphenyl]-3-yl)propan-1-ol (HANBP) on the Lys rest that inhibits its activity. The modified peptide is highly soluble in water and can be simply conjugated to -COOH containing hydrogels via its terminal -NH 2 group. Light exposure allows presentation of the IKVAV adhesi…

0301 basic medicineIn situMaterials scienceNeuritePeptidomimeticNeuronal OutgrowthPeptideINGENIERÍAS Y TECNOLOGÍAS02 engineering and technologyBiotecnología Industrial03 medical and health sciencesMiceCoated Materials BiocompatibleNeural Stem CellsDIRECTIONAL NEURONAL GROWTHLamininIKVAVNeuritesAnimalsGeneral Materials Sciencechemistry.chemical_classificationbiologyPHOTO-TRIGGERED CELL ADHESIONBioproductos Biomateriales Bioplásticos Biocombustibles Bioderivados etc.Hydrogels021001 nanoscience & nanotechnologyNeural stem cellPeptide FragmentsLAMININ PEPTIDOMIMETICS030104 developmental biologychemistryCell cultureSelf-healing hydrogelsbiology.proteinBiophysicsLamininPeptidomimetics0210 nano-technologyACS Applied Materials & Interfaces
researchProduct

In Vivo siRNA Delivery to Immunosuppressive Liver Macrophages by alpha-Mannosyl-Functionalized Cationic Nanohydrogel Particles

2020

Macrophages are the front soldiers of the innate immune system and are vital for immune defense, tumor surveillance, and tissue homeostasis. In chronic diseases, including cancer and liver fibrosis, macrophages can be forced into an immunosuppressive and profibrotic M2 phenotype. M2-type macrophages overexpress the mannose receptor CD206. Targeting these cells via CD206 and macrophage repolarization towards an immune stimulating and antifibrotic M1 phenotype through RNA interference represents an appealing therapeutic approach. We designed nanohydrogel particles equipped with mannose residues on the surface (ManNP) that delivered siRNA more efficiently to M2 polarized macrophages compared t…

0301 basic medicineLiver CirrhosissiRNA deliveryTHP-1 Cellsmedicine.medical_treatmentmannose targetingMice0302 clinical medicineDrug Delivery SystemsFibrosisMacrophageM2 macrophagesRNA Small Interferinglcsh:QH301-705.5Tissue homeostasisMice Inbred BALB CChemistryHydrogelsGeneral MedicineHep G2 CellsLiver030220 oncology & carcinogenesisFemaleimmunotherapyMannose receptorMannose ReceptorReceptors Cell Surfacegene knock-downArticlenanohydrogels03 medical and health sciencesImmune systemIn vivomedicineImmune ToleranceAnimalsHumanscancerLectins C-TypeInnate immune systemMacrophagesfibrosisImmunotherapyMacrophage Activationmedicine.disease030104 developmental biologyMannose-Binding LectinsRAW 264.7 Cellslcsh:Biology (General)Cancer researchNanoparticlesMannose
researchProduct

Bi-layered polyurethane – Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model

2016

As an intervention to abrogate ischemic cardiomyopathy, the concept of applying a temporary, local patch to the surface of the recently infarcted ventricle has been explored from a number of design perspectives. Two important features considered for such a cardiac patch include the provision of appropriate mechanical support and the capacity to influence the remodeling pathway by providing cellular or biomolecule delivery. The objective of this report was to focus on these two features by first evaluating the incorporation of a cardiac extracellular matrix (ECM) component, and second by evaluating the impact of patch anisotropy on the pathological remodeling process initiated by myocardial …

0301 basic medicineMaterials scienceAngiogenesisPolyurethanesBiophysicsMyocardial IschemiaInfarctionBiocompatible MaterialsBioengineeringCeramics and Composite02 engineering and technologyCardiac ECMBiomaterialsExtracellular matrixRats Sprague-Dawley03 medical and health sciencesVentricular Dysfunction LeftAbsorbable ImplantsMaterials TestingmedicineAnimalsMyocardial infarctionCardiac patchIschemic cardiomyopathyTissue ScaffoldsVentricular RemodelingVentricular wallHydrogelsRecovery of Function021001 nanoscience & nanotechnologymedicine.diseaseBiomaterialExtracellular MatrixRatsCompliance (physiology)Electrospun scaffold030104 developmental biologymedicine.anatomical_structureTreatment OutcomeBiophysicVentricleRats Inbred LewMechanics of MaterialsCeramics and CompositesFemale0210 nano-technologyStructure - functionBiomedical engineering
researchProduct

Photocrosslinked Dextran-Based Hydrogels as Carrier System for the Cells and Cytokines Induce Bone Regeneration in Critical Size Defects in Mice

2018

Modified biomaterials have for years been the focus of research into establishing new bone substitutes. In our preceding in vitro study employing different cell cultures, we developed chemically and mechanically characterized hydrogels based on photocrosslinkable dextran derivatives and demonstrated their cytocompatibility and their beneficial effects on the proliferation of osteoblasts and endothelial cells. In the present in vivo study, we investigate photocrosslinked dextran-based hydrogels in critical size defects in mice to evaluate their potential as carrier systems for cells or for a specific angiogenesis enhancing cytokine to induce bone formation. We could demonstrate that, with op…

0301 basic medicinePolymers and PlasticsCarrier systemAngiogenesismedicine.medical_treatmentBioengineering02 engineering and technologyArticleSDF-1lcsh:ChemistryBiomaterials03 medical and health scienceschemistry.chemical_compoundlcsh:General. Including alchemybone regenerationIn vivolcsh:Inorganic chemistrymedicinecarrier systemlcsh:ScienceBone regenerationdextran-based hydrogelsChemistryOrganic Chemistry021001 nanoscience & nanotechnologylcsh:QD146-197Cell biology030104 developmental biologyCytokineDextranlcsh:QD1-999Cell culturecritical size defectSelf-healing hydrogelslcsh:Q0210 nano-technologylcsh:QD1-65Gels
researchProduct

Data concerning the proteolytic resistance and oxidative stress in LAN5 cells after treatment with BSA hydrogels

2016

AbstractProteolytic resistance is a relevant aspect to be tested in the formulation of new nanoscale biomaterials. The action of proteolytic enzymes is a very fast process occurring in the range of few minutes. Here, we report data concerning the proteolytic resistance of a heat-set BSA hydrogel obtained after 20-hour incubation at 60°C prepared at the pH value of 3.9, pH at which the hydrogel presents the highest elastic character with respect to gel formed at pH 5.9 and 7.4 “Heat-and pH-induced BSA conformational changes, hydrogel formation and application as 3D cell scaffold” (G. Navarra, C. Peres, M. Contardi, P. Picone, P.L. San Biagio, M. Di Carlo, D. Giacomazza, V. Militello, 2016) […

0301 basic medicineProgrammed cell death?-aggregateschemistry.chemical_element02 engineering and technologyZinclcsh:Computer applications to medicine. Medical informaticsmedicine.disease_cause03 medical and health sciencesβ-aggregatemedicineCell-scaffoldlcsh:Science (General)Data Articlechemistry.chemical_classificationMultidisciplinarybiologyProteolytic enzymesOxidative StreHydrogels021001 nanoscience & nanotechnologyProteinase KCell-scaffolHydrogelβ-aggregatesOxidative Stress030104 developmental biologyEnzymechemistryBiochemistryDrug deliverySelf-healing hydrogelsDrug deliverybiology.proteinlcsh:R858-859.70210 nano-technologyProteolytic resistanceOxidative stresslcsh:Q1-390Data in Brief
researchProduct

Biological performance of cell-encapsulated methacrylated gellan gum-based hydrogels for nucleus pulposus regeneration

2014

Limitations of current treatments for intervertebral disc (IVD) degeneration have promoted interest in the development of tissue-engineering approaches. Injectable hydrogels loaded with cells can be used as a substitute material for the inner IVD part, the nucleus pulposus (NP), and provide an opportunity for minimally invasive treatment of IVD degeneration. The NP is populated by chondrocyte-like cells; therefore, chondrocytes and mesenchymal stem cells (MSCs), stimulated to differentiate along the chondrogenic lineage, could be used to promote NP regeneration. In this study, the in vitro and in vivo response of human bone marrow-derived MSCs and nasal chondrocytes (NCs) to modified gellan…

0301 basic medicineRegeneration (biology)Mesenchymal stem cellBiomedical EngineeringMedicine (miscellaneous)02 engineering and technology021001 nanoscience & nanotechnologyChondrogenesisIn vitroGellan gumCell biologyBiomaterials03 medical and health scienceschemistry.chemical_compound030104 developmental biologychemistryTissue engineeringIn vivoSelf-healing hydrogels0210 nano-technologyBiomedical engineeringJournal of Tissue Engineering and Regenerative Medicine
researchProduct

Heat- and pH-induced BSA conformational changes, hydrogel formation and application as 3D cell scaffold

2016

Aggregation and gelation of globular proteins can be an advantage to generate new forms of nanoscale biomaterials based on the fibrillar architecture. Here, we report results obtained by exploiting the proteins' natural tendency to self-organize in 3D network, for the production of new material based on BSA for medical application. In particular, at five different pH values the conformational and structural changes of the BSA during all the steps of the thermal aggregation and gelation have been analyzed by FTIR spectroscopy. The macroscopic mechanical properties of these hydrogels have been obtained by rheological measurements. The microscopic structure of the gels have been studied by AFM…

0301 basic medicineScaffoldHot TemperatureNanostructureBSACell SurvivalProtein ConformationGlobular proteinBiophysics?-aggregatesBiocompatible Materials02 engineering and technologymacromolecular substancesMicroscopy Atomic ForceBiochemistryMice03 medical and health sciencesProtein structureRheologySpectroscopy Fourier Transform Infraredβ-aggregateAnimalsCell-scaffoldFourier transform infrared spectroscopyMolecular BiologyNanoscopic scalechemistry.chemical_classificationTissue ScaffoldsChemistrySerum Albumin BovineHydrogelsHydrogen-Ion Concentration021001 nanoscience & nanotechnologySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)NanostructuresHydrogelCrystallography030104 developmental biologyMechanical spectraBiophysicChemical engineeringFTIRSelf-healing hydrogelsMicroscopy Electron ScanningCattleStress MechanicalRheology0210 nano-technology
researchProduct

Guanosine-5'-Monophosphate Polyamine Hybrid Hydrogels: Enhanced Gel Strength Probed by z-Spectroscopy.

2017

The self-assembling tendencies of guanosine-5'-monophosphate (GMP) can be drastically increased using polyamines, with potential applications in the production of biocompatible smart materials, as well as for the design of anti-tumoral drugs based on G-quadruplex stabilization. Results from scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS), rheology and nuclear magnetic resonance (NMR) z-spectroscopy studies are presented.

0301 basic medicineScanning electron microscopeChemistryScatteringOrganic ChemistryGuanosineGeneral Chemistry010402 general chemistrySmart material01 natural sciencesCatalysis0104 chemical sciences03 medical and health sciencesCrystallographychemistry.chemical_compound030104 developmental biologyRheologyChemical engineeringSelf-healing hydrogelsSpectroscopyPolyamineChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Automated detection of protein unfolding events in atomic force microscopy force curves

2016

Atomic force microscopy is not only a high-resolution imaging device but also a mechanical machine, which can be used either to indent or stretch (soft) biomaterials. Due to the statistical nature of such materials (i.e., hydrogels or polymers) hundreds of force-distance curves are required to describe their mechanical properties. In this manuscript, we present an automated system for polymer unfolding detection based on continuous wavelet analysis. We have tested the automated program on elastin, which is an important protein that provides elasticity to tissues and organs. Our results show that elastin changes its mechanical behavior in the presence of electrolytes. In particular, we show …

0301 basic medicinechemistry.chemical_classificationHistologyMaterials sciencebiologyAtomic force microscopy0206 medical engineeringNanotechnology02 engineering and technologyPolymerAdhesion020601 biomedical engineeringForce curves03 medical and health sciencesMedical Laboratory Technology030104 developmental biologychemistrySelf-healing hydrogelsbiology.proteinContour lengthAnatomyElasticity (economics)Biological systemInstrumentationElastinMicroscopy Research and Technique
researchProduct

Characterization of EGF-guided MDA-MB-231 cell chemotaxis in vitro using a physiological and highly sensitive assay system

2018

Chemotactic cell migration is a central mechanism during cancer cell invasion and hence metastasis. In order to mimic in vivo conditions, we used a three-dimensional hydrogel matrix made of collagen I and a stable gradient-generating chemotaxis assay system, which is commercially available (μ-Slide Chemotaxis) to characterize epidermal growth factor (EGF)-induced chemotaxis of the human breast cancer cell line MDA-MB-231. Surprisingly, chemotactic effects of EGF on MDA-MB-231 cells could neither be observed in the standard growth medium DMEM/F-12 supplemented with 10% serum nor in starvation medium. In contrast, after adapting the cells to the serum-free growth medium UltraCULTURETM, signif…

0301 basic medicinelcsh:MedicineBreast Neoplasms03 medical and health sciences0302 clinical medicineEpidermal growth factorIn vivoCell Line TumorHumansNeoplasm Metastasislcsh:ScienceReceptorMultidisciplinaryEpidermal Growth FactorTissue ScaffoldsChemistryChemotaxislcsh:RHydrogelsCell migrationChemotaxisPeptide FragmentsCulture MediaCell biologyErbB Receptors030104 developmental biologyCell culture030220 oncology & carcinogenesisCancer celllcsh:QCollagenChemotaxis assayPLOS ONE
researchProduct