Search results for "iGen"

showing 10 items of 13400 documents

Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3

2012

Abstract ESA's upcoming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to ensure continuity for Landsat 5/7, SPOT-5, SPOT-Vegetation and Envisat MERIS observations by providing superspectral images of high spatial and temporal resolution. S2 and S3 will deliver near real-time operational products with a high accuracy for land monitoring. This unprecedented data availability leads to an urgent need for developing robust and accurate retrieval methods. Machine learning regression algorithms may be powerful candidates for the estimation of biophysical parameters from satellite reflectance measurements because of their ability to perform adaptive, nonlinear data fitting. By using data from …

010504 meteorology & atmospheric sciencesArtificial neural networkMean squared errorbusiness.industryComputer science0211 other engineering and technologiesSoil ScienceGeology02 engineering and technologyMachine learningcomputer.software_genre01 natural sciencesRegressionSupport vector machineTemporal resolutionGround-penetrating radarCurve fittingArtificial intelligenceComputers in Earth SciencesbusinessImage resolutioncomputer021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRemote Sensing of Environment
researchProduct

Optimized Class-Separability in Hyperspectral Images

2016

International audience; Image visualization techniques are mostly based on three bands as RGB color composite channels for human eye to characterize the scene. This, however, is not effective in case of hyper-spectral images (HSI) because they contain dozens of informative spectral bands. To eliminate redundancy of spectral information among these bands, dimensionality reduction (DR) is applied while at the same trying to retain maximum information. In this paper, we propose a new method of information-preserved hyper-spectral satellite image visualization that is based on fusion of unsupervised band selection techniques and color matching function (CMF) stretching. The results show consist…

010504 meteorology & atmospheric sciencesBand SelectionComputer science0211 other engineering and technologiesComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION[SDU.STU]Sciences of the Universe [physics]/Earth Sciences02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing01 natural sciencesTransformation[SPI]Engineering Sciences [physics][ SPI.NRJ ] Engineering Sciences [physics]/Electric powerDisplay[ SPI ] Engineering Sciences [physics]Computer visionclass separabilityFusion021101 geological & geomatics engineering0105 earth and related environmental sciencesColor imagebusiness.industry[SPI.NRJ]Engineering Sciences [physics]/Electric powerHyperspectral imagingPattern recognition[ SDU.STU ] Sciences of the Universe [physics]/Earth SciencesImage segmentationSpectral bandsDimensionality reductionVisualization[SPI.TRON]Engineering Sciences [physics]/Electronics[ SPI.TRON ] Engineering Sciences [physics]/ElectronicsImaging spectroscopyFull spectral imagingRGB color modelArtificial intelligencehyper-spectral image visualizationbusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

Recent Advances in Techniques for Hyperspectral Image Processing

2009

International audience; Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than thirty years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspec- tral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the high-dimensional nature of the data, and to integrate the spa- tial and spectral information. Performance of the discussed techniques is evaluated in …

010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesSoil ScienceImage processing02 engineering and technologyMachine learningcomputer.software_genre01 natural sciences[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingComputer visionComputers in Earth Sciences021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingData processingContextual image classificationbusiness.industryHyperspectral imagingGeologyImaging spectroscopyInformation extractionKernel methodSnapshot (computer storage)Artificial intelligencebusinesscomputer[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

Statistical retrieval of atmospheric profiles with deep convolutional neural networks

2019

Abstract Infrared atmospheric sounders, such as IASI, provide an unprecedented source of information for atmosphere monitoring and weather forecasting. Sensors provide rich spectral information that allows retrieval of temperature and moisture profiles. From a statistical point of view, the challenge is immense: on the one hand, “underdetermination” is common place as regression needs to work on high dimensional input and output spaces; on the other hand, redundancy is present in all dimensions (spatial, spectral and temporal). On top of this, several noise sources are encountered in the data. In this paper, we present for the first time the use of convolutional neural networks for the retr…

010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesWeather forecasting02 engineering and technologycomputer.software_genreAtmospheric measurements01 natural sciencesConvolutional neural networkLinear regressionRedundancy (engineering)Information retrievalInfrared measurementsComputers in Earth SciencesEngineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesArtificial neural networkbusiness.industryDeep learningDimensionality reductionPattern recognitionAtomic and Molecular Physics and OpticsComputer Science Applications13. Climate actionNoise (video)Artificial intelligencebusinesscomputerNeural networksISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Edge-Based Missing Data Imputation in Large-Scale Environments

2021

Smart cities leverage large amounts of data acquired in the urban environment in the context of decision support tools. These tools enable monitoring the environment to improve the quality of services offered to citizens. The increasing diffusion of personal Internet of things devices capable of sensing the physical environment allows for low-cost solutions to acquire a large amount of information within the urban environment. On the one hand, the use of mobile and intermittent sensors implies new scenarios of large-scale data analysis

010504 meteorology & atmospheric sciencesComputer scienceDistributed computingUrban sensingMobile sensingContext (language use)Information technology02 engineering and technology01 natural sciences[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Smart cityEdge intelligence11. Sustainability0202 electrical engineering electronic engineering information engineeringLeverage (statistics)Edge computingVoronoi tessellation0105 earth and related environmental sciencesSmart cityOut-of-order executionSettore INF/01 - InformaticaMulti-agent systemMissing data imputation020206 networking & telecommunicationsT58.5-58.64Variety (cybernetics)Multi-agent system[INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA]Mobile deviceInformation Systems
researchProduct

Multioutput Automatic Emulator for Radiative Transfer Models

2018

This paper introduces a methodology to construct emulators of costly radiative transfer models (RTMs). The proposed methodology is sequential and adaptive, and it is based on the notion of acquisition functions in Bayesian optimization. Here, instead of optimizing the unknown underlying RTM function, one aims to achieve accurate approximations. The Automatic Multi-Output Gaussian Process Emulator (AMO-GAPE) methodology combines the interpolation capabilities of Gaussian processes (GPs) with the accurate design of an acquisition function that favors sampling in low density regions and flatness of the interpolation function. We illustrate the promising capabilities of the method for the const…

010504 meteorology & atmospheric sciencesComputer scienceFlatness (systems theory)Bayesian optimizationSampling (statistics)02 engineering and technologyFunction (mathematics)Atmospheric model01 natural sciencessymbols.namesakeSampling (signal processing)0202 electrical engineering electronic engineering information engineeringsymbolsRadiative transfer020201 artificial intelligence & image processingGaussian process emulatorGaussian processAlgorithm0105 earth and related environmental sciencesInterpolationIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples

2016

Abstract. Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squar…

010504 meteorology & atmospheric sciencesComputer scienceStratigraphySoil ScienceImage processing010502 geochemistry & geophysicsResidual01 natural sciences550 Earth scienceslcsh:StratigraphyGeochemistry and PetrologyLeast squares support vector machineSegmentationlcsh:QE640-6990105 earth and related environmental sciencesEarth-Surface ProcessesPixelbusiness.industrylcsh:QE1-996.5PaleontologyGeologyPattern recognition550 Geowissenschaftenlcsh:GeologyData setSupport vector machineGeophysicsData pointArtificial intelligencebusinessSolid Earth
researchProduct

Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging

2017

Made available in DSpace on 2018-12-11T17:11:58Z (GMT). No. of bitstreams: 0 Previous issue date: 2017-03-01 Suomen Akatemia Small unmanned aerial vehicle (UAV) based remote sensing is a rapidly evolving technology. Novel sensors and methods are entering the market, offering completely new possibilities to carry out remote sensing tasks. Three-dimensional (3D) hyperspectral remote sensing is a novel and powerful technology that has recently become available to small UAVs. This study investigated the performance of UAV-based photogrammetry and hyperspectral imaging in individual tree detection and tree species classification in boreal forests. Eleven test sites with 4151 reference trees repr…

010504 meteorology & atmospheric sciencesComputer scienceUAV0211 other engineering and technologiesPoint cloudta117102 engineering and technologyradiometryphotogrammetry01 natural sciencesforestComputer visionForestRadiometrylcsh:Science021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingfotogrammetriata113UAV; hyperspectral; photogrammetry; radiometry; point cloud; forest; classificationluokitus (toiminta)ta114business.industryHyperspectral imaging15. Life on landOtaNanoClassificationRandom forestPoint cloudTree (data structure)PhotogrammetryhyperspectralHyperspectralclassification13. Climate actionMultilayer perceptronPhotogrammetryGeneral Earth and Planetary SciencesRadiometryRGB color modellcsh:QArtificial intelligencebusinesspoint cloudRemote Sensing; Volume 9; Issue 3; Pages: 185
researchProduct

Convolutional Neural Networks for Cloud Screening: Transfer Learning from Landsat-8 to Proba-V

2018

Cloud detection is a key issue for exploiting the information from Earth observation satellites multispectral sensors. For Proba-V, cloud detection is challenging due to the limited number of spectral bands. Advanced machine learning methods, such as convolutional neural networks (CNN), have shown to work well on this problem provided enough labeled data. However, simultaneous collocated information about the presence of clouds is usually not available or requires a great amount of manual labor. In this work, we propose to learn from the available Landsat −8 cloud masks datasets and transfer this learning to solve the Proba-V cloud detection problem. CNN are trained with Landsat images adap…

010504 meteorology & atmospheric sciencesComputer sciencebusiness.industryMultispectral image0211 other engineering and technologiesPattern recognitionCloud computing02 engineering and technologySpectral bands01 natural sciencesConvolutional neural networkData modelingKey (cryptography)Artificial intelligencebusinessTransfer of learning021101 geological & geomatics engineering0105 earth and related environmental sciencesIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks

2020

Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were emp…

010504 meteorology & atmospheric sciencesComputer sciencehyperspectral image classificationScience0211 other engineering and technologiesgeoinformatics02 engineering and technologyneuroverkot01 natural sciencesConvolutional neural networkpuulajitPARAMETERSSet (abstract data type)LIDARFORESTSClassifier (linguistics)021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryDeep learningspektrikuvausQHyperspectral imagingdeep learningPattern recognition15. Life on landmiehittämättömät ilma-aluksetPerceptron113 Computer and information sciencesClass (biology)drone imagery3d convolutional neural networksmetsänarviointiMACHINEkoneoppiminentree species classification3D convolutional neural networksGeneral Earth and Planetary SciencesRGB color modelArtificial intelligencekaukokartoitusbusinesshyperspectral image classificationRemote Sensing
researchProduct