Search results for "ibi"

showing 10 items of 13473 documents

High sensitivity characterization of the nonlinear electric susceptibility of a glass ceramic in the microwave range

2019

The nonlinear electric susceptibility of a glass ceramic is characterized in the microwave range by measuring intermodulation of two high-power signals. To achieve the necessary sensitivity for dielectric nonlinearities, the setup ensures that the measured intermodulation can be ascribed to the material under test while all other intermodulation sources are suppressed. This is achieved by coupling three dielectric resonators in a cut-off waveguide. The third order nonlinearity of the glass ceramic is found to be χ3/er = (1.6 ± 0.8) × 10−15 m2/V2 at 950 MHz. The magnitude is comparable to the previously measured high-end sintered ceramics. The power of the intermodulation signal as a functio…

010302 applied physicsWaveguide (electromagnetism)Materials scienceGlass-ceramicPhysics and Astronomy (miscellaneous)business.industryElectric susceptibility02 engineering and technologyDielectric021001 nanoscience & nanotechnology01 natural scienceslaw.inventionResonatorlawvisual_art0103 physical sciencesvisual_art.visual_art_mediumOptoelectronicsCeramic0210 nano-technologybusinessSensitivity (electronics)IntermodulationApplied Physics Letters
researchProduct

High-pressure x-ray-absorption study of GaSe

2002

The III-VI layered semiconductor InSe has been studied by high-pressure single crystal x-ray absorption spectroscopy up to a maximum pressure of 14 GPa. The In-Se distance has been measured in both the low- pressure layered phase and the high-pressure NaCl phase. The bond compressibility in the layered phase is lower than the ``a'' crystallographic parameter compressibility, which implies an increase of the angle between the In-Se bond and the layer plane. Under plausible hypothesis, a description of the evolution of the whole structure with pressure is given. In particular, the intralayer distance is observed to increase with increasing pressure. A plausible precursor defect and a simple m…

010302 applied physics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Materials scienceCondensed matter physicsAbsorption spectroscopybusiness.industryPlane (geometry)[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]X-ray02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesOpticsSemiconductorPhase (matter)0103 physical sciencesCompressibility[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]0210 nano-technologyAbsorption (electromagnetic radiation)businessSingle crystalComputingMilieux_MISCELLANEOUS
researchProduct

Spin crossover (SCO) iron(II) coordination polymer chain: Synthesis, structural and magnetic characterizations of [Fe(abpt)2(μ-M(CN)4)] (M=PtII and N…

2013

Abstract New iron(II) coordination polymeric neutral chain of formula [Fe(abpt) 2 (μ-M(CN) 4 )], with M = Pt II ( 1 ), Ni II ( 2 ) and abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole, have been synthesized and characterized by infrared spectroscopy, X-ray diffraction and magnetic measurements. The two compounds are isostructural as deduced from a Rietveld analysis of X-ray powder diffraction data of 2 simulated from the single crystal structure of 1 . The crystal packing of 1 is formed by regular chains running along the crystallographic [−1 0 1] direction where the planar [Pt(CN) 4 ] 2− anion acts as a μ 2 -bridging ligand via two nitrogen atoms of two different trans cyano groups, whi…

010405 organic chemistryChemistryCoordination polymerRietveld refinementInorganic chemistryBridging ligand010402 general chemistry01 natural sciencesMagnetic susceptibility0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundCrystallographySpin crossoverMaterials Chemistry[CHIM.CRIS]Chemical Sciences/CristallographyPhysical and Theoretical ChemistryIsostructuralSingle crystalPowder diffraction
researchProduct

Self-assembly of the tetrachlorido(oxalato)rhenate( iv ) anion with protonated organic cations: X-ray structures and magnetic properties

2016

Two novel ReIV compounds of formulae [H2bpy][ReIVCl4(ox)] (1) and [H3biim]2[ReIVCl4(ox)] (2) [H2bpy2+ = 4,4′-bipyridinium dication, H3biim+ = 2,2′-biimidazolium monocation, and ox2− = oxalate dianion] have been synthesised and magneto-structurally characterised. 1 crystallises in the monoclinic system with space group C2/c, and 2 crystallises in the triclinic system with space group P[1 with combining macron]. The ReIV ion in 1 and 2 is six-coordinate, bonded to four chloride ions and two oxalate-oxygen atoms in a distorted octahedral geometry. Short intermolecular ReIV–Cl⋯Cl–ReIV contacts, Cl⋯π type interactions and hydrogen bonds are present in the crystal lattice of both compounds, gener…

010405 organic chemistryChemistryInorganic chemistrySupramolecular chemistryGeneral ChemistryCrystal structureTriclinic crystal system010402 general chemistryCondensed Matter Physics01 natural sciencesMagnetic susceptibilityOxalate0104 chemical sciencesDicationchemistry.chemical_compoundCrystallographyOctahedral molecular geometryGeneral Materials ScienceMonoclinic crystal system
researchProduct

Electrostatic complementarity in pseudoreceptor modeling based on drug molecule crystal structures: the case of loxistatin acid (E64c)

2015

After a long history of use as a prototype cysteine protease inhibitor, the crystal structure of loxistatin acid (E64c) is finally determined experimentally using intense synchrotron radiation, providing insight into how the inherent electronic nature of this protease inhibitor molecule determines its biochemical activity. Based on the striking similarity of its intermolecular interactions with those observed in a biological environment, the electrostatic potential of crystalline E64c is used to map the characteristics of a pseudo-enzyme pocket.

010405 organic chemistryChemistryIntermolecular forceGeneral ChemistryCrystal structureBiochemical Activity010402 general chemistry01 natural sciencesCysteine proteaseCatalysisProtease inhibitor (biology)0104 chemical sciencesCrystallographyLoxistatinComplementarity (molecular biology)Materials ChemistrymedicineMoleculemedicine.drugNew Journal of Chemistry
researchProduct

A trigonal prismatic anionic iron(iii) complex of a radical o-iminobenzosemiquinonate derivative: structural and spectral analyses

2017

A new iron(III) complex, [Et3NH][FeIII(L2−˙)2] (1) with a substituted o-aminophenol based ligand is reported. Complex 1 is an anionic complex with a triethylammonium cation in the lattice. It contains two O,O,N-coordinated o-iminobenzosemiquinonate(2−) radical anions with an Fe(III) centre in a high-spin configuration. The crystal structure of 1 was determined by X-ray diffraction, which revealed a trigonal prismatic coordination environment whose electronic structure was established by various physical methods including EPR, Mossbauer spectroscopy and variable-temperature (2–300 K) magnetic susceptibility measurements. Electrochemical analysis indicated primarily ligand-centred redox proce…

010405 organic chemistryChemistryLigandGeneral ChemistryCrystal structureElectronic structure010402 general chemistryTrigonal prismatic molecular geometry01 natural sciencesMagnetic susceptibilityCatalysis0104 chemical scienceslaw.inventionCrystallographylawMössbauer spectroscopyMaterials ChemistryGround stateElectron paramagnetic resonanceNew Journal of Chemistry
researchProduct

A rare polymeric azido-bridged copper(II) chain with a pentameric repeating unit: Synthesis, structure and magnetic properties

2013

International audience; The novel polymeric chain copper(II) complex [Cu4(μ-Mesalpn)2(μ1,1,1-N3)2(μ1,1-N3)2Cu]n (1) was prepared by the reaction of Cu(NO3)2·3H2O with Mesalpn in the presence of an excess of NaN3. A single-crystal X-ray diffraction study showed an unusual 1D polymeric chain based on pentanuclear Cu5 units with both μ1,1,1-N3 and μ1,1-N3 bridges, and with three independent Cu(II) ions presenting three different coordination numbers (4, 5 and 6). The magnetic susceptibility data show the presence of dominant anti-ferromagnetic interactions.

010405 organic chemistryChemistryPentanuclearCoordination numberchemistry.chemical_elementSingle-crystal010402 general chemistry01 natural sciencesMagnetic susceptibilityCopper0104 chemical sciences3. Good healthIonInorganic ChemistryCrystallographyChain (algebraic topology)Copper(II) complexMaterials Chemistry[CHIM]Chemical Sciences1D polymeric chainPhysical and Theoretical ChemistrySingle crystal
researchProduct

Single Enantiomer’s Urge to Crystallize in Centrosymmetric Space Groups: Solid Solutions of Phenylpiracetam

2017

A detailed thermochemical and structural study of the phenylpiracetam enantiomer system was performed by characterizing the solid solutions, rationalizing the structural driving force for their formation, as well as identifying a common structural origin responsible for the formation of solid solutions of enantiomers. Enantiomerically pure phenylpiracetam forms two enantiotropically related polymorphs (enant–A and enant–B). The transition point (70(7) °C) was determined based on isobaric heat capacity measurements. Structural studies revealed that enant–A and enant–B crystallize in space groups P1 (Z′ = 4) and P212121 (Z′ = 2), respectively. However, pseudoinversion centers were present res…

010405 organic chemistryChemistrySpace groupGeneral Chemistry010402 general chemistryCondensed Matter PhysicsCentrosymmetry01 natural sciencesMiscibilityHeat capacity0104 chemical sciencesCrystallographyTransition pointIsobaric processGeneral Materials ScienceEnantiomerSolid solutionCrystal Growth & Design
researchProduct

Synthesis, crystal structure and magnetic properties of [Co(bpcam)2]ClO4·dmso·H2O, [Co(bpcam)2]2[Co(NCS)4]·dmso·H2O and [Ni(bpcam)2]·H2O [Hbpcam = bi…

2017

The preparation, spectroscopic characterization, structural study and magnetic investigation of three new complexes of formula [Co(bpcam)2]ClO4·dmso·H2O (1), [Co(bpcam)2]2[Co(NCS)4]·dmso·H2O (2) and [Ni(bpcam)2]·H2O (3) [Hbpcam = bis(2-pyrimidylcarbonyl)amide] are reported. Each bpcam group in 1–3 acts as a tridentate ligand being coordinated to the cobalt(III) (1 and 2)/nickel(II) (3) ions through three nitrogen atoms in a mer-arrangement. Six-coordinate cobalt(III) and nickel(II) occur in 1 and 3 respectively, whereas six-coordinate cobalt(III) and four-coordinate cobalt(II) coexist in 2. Cyclic voltammetry of 1 in acetonitrile shows the occurrence of one quasi reversible CoIII ↔ CoII pro…

010405 organic chemistryChemistryStereochemistrychemistry.chemical_elementGeneral ChemistryCrystal structureAtmospheric temperature range010402 general chemistry01 natural sciencesMagnetic susceptibilityCatalysis0104 chemical sciencesNickelCrystallographychemistry.chemical_compoundAmideMaterials ChemistryCyclic voltammetryAcetonitrileCobaltNew Journal of Chemistry
researchProduct

Protonation of Tyrosine Kinase Inhibitor Lapatinib: A Theoretical and Experimental Study

2019

The protonation process of tyrosine kinase inhibitor lapatinib was studied by means of 1HNMR and UV/Vis spectroscopy joint with the theoretical calculations at DFT and semi-empirical levels. DFT/M06-2X geometries were used to describe and compare the different cationic forms of lapatinib, while ZINDO/S-CI method performed on those geometries allowed for the interpretation of experimental UV/Vis spectra of lapatinib at various pH. We found that at low pH two different dicationic forms (N2N1 and N1N3) of lapatinib were present in ethanol and DMSO-d6 solutions. The first protonation, however, occurred on the aliphatic N1 in DMSO-d6, while in ethanol solutions most probably the quinazoline nitr…

010405 organic chemistryChemistryStereochemistrymedicine.drug_classMechanical EngineeringProtonationNuclear magnetic resonance spectroscopy010402 general chemistryLapatinib01 natural sciencesTyrosine-kinase inhibitor0104 chemical sciencesUltraviolet visible spectroscopyMechanics of MaterialsmedicineGeneral Materials Sciencemedicine.drugKey Engineering Materials
researchProduct