Search results for "image classification"
showing 10 items of 114 documents
Recent Advances in Techniques for Hyperspectral Image Processing
2009
International audience; Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than thirty years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspec- tral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the high-dimensional nature of the data, and to integrate the spa- tial and spectral information. Performance of the discussed techniques is evaluated in …
Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks
2020
Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were emp…
Efficient remote sensing image classification with Gaussian processes and Fourier features
2017
This paper presents an efficient methodology for approximating kernel functions in Gaussian process classification (GPC). Two models are introduced. We first include the standard random Fourier features (RFF) approximation into GPC, which largely improves the computational efficiency and permits large scale remote sensing data classification. In addition, we develop a novel approach which avoids randomly sampling a number of Fourier frequencies, and alternatively learns the optimal ones using a variational Bayes approach. The performance of the proposed methods is illustrated in complex problems of cloud detection from multispectral imagery.
SVM-based classification of High resolution Urban Satellites Images using Dense SURF and Spectral Information
2018
Remote-sensing focusing on image classification knows a large progress and receives the attention of the remote-sensing community day by day. Combining many kinds of extracted features has been successfully applied to High resolution urban satellite images using support vector machine (SVM). In this paper, we present a methodology that is promoting a performed classification by using pixel-wise SURF description features combined with spectral information in Cielab space for the first time on common scenes of urban imagery. The proposed method gives a promising classification accuracy when compared with the two types of features used separately.
SAR Image Classification Combining Structural and Statistical Methods
2011
The main objective of this paper is to develop a new technique of SAR image classification. This technique combines structural parameters, including the Sill, the slope, the fractal dimension and the range, with statistical methods in a supervised image classification. Thanks to the range parameter, we define the suitable size of the image window used in the proposed approach of supervised image classification. This approach is based on a new way of characterising different classes identified on the image. The first step consists in determining relevant area of interest. The second step consists in characterising each area identified, by a matrix. The last step consists in automating the pr…
Understanding deep learning in land use classification based on Sentinel-2 time series
2020
AbstractThe use of deep learning (DL) approaches for the analysis of remote sensing (RS) data is rapidly increasing. DL techniques have provided excellent results in applications ranging from parameter estimation to image classification and anomaly detection. Although the vast majority of studies report precision indicators, there is a lack of studies dealing with the interpretability of the predictions. This shortcoming hampers a wider adoption of DL approaches by a wider users community, as model’s decisions are not accountable. In applications that involve the management of public budgets or policy compliance, a better interpretability of predictions is strictly required. This work aims …
Benchmark database for fine-grained image classification of benthic macroinvertebrates
2018
Managing the water quality of freshwaters is a crucial task worldwide. One of the most used methods to biomonitor water quality is to sample benthic macroinvertebrate communities, in particular to examine the presence and proportion of certain species. This paper presents a benchmark database for automatic visual classification methods to evaluate their ability for distinguishing visually similar categories of aquatic macroinvertebrate taxa. We make publicly available a new database, containing 64 types of freshwater macroinvertebrates, ranging in number of images per category from 7 to 577. The database is divided into three datasets, varying in number of categories (64, 29, and 9 categori…
Melanoma-Nevus Discrimination Based on Image Statistics in Few Spectral Channels
2016
The purpose of this paper is to offer a method for discrimination of cutaneous melanoma from benign nevus, founded on analysis of skin lesion image. At the core of method is calculation of mean and standard deviation of pixel optical density values for a few narrow spectral bands. Calculated values are compared with discriminating thresholds derived from a set of images of benign nevi and melanomas with known diagnosis. Classification is done applying weighted majority rule to results of thresholding. Verification against the available multispectral images of 32 melanomas and 94 benign nevi has shown that the method using three spectral bands provided zero false negative and four false posi…
Improving active learning methods using spatial information
2011
Active learning process represents an interesting solution to the problem of training sample collection for the classification of remote sensing images. In this work, we propose a criterion based on the spatial information that can be used in combination with a spectral criterion in order to improve the selection of training samples. Experimental results obtained on a very high resolution image show the effectiveness of regularization in spatial domain and open challenging perspectives for terrain campaigns planning. © 2011 IEEE.
Comparison of Micro X-ray Computer Tomography Image Segmentation Methods: Artificial Neural Networks Versus Least Square Support Vector Machine
2013
Micro X-ray computer tomography (XCT) is a powerful non-destructive method for obtaining information about rock structures and mineralogy. A new methodology to obtain porosity from 2D XCT digital images using artificial neural network and least square support vector machine is demonstrated following these steps: the XCT image was first preprocessed, thereafter clustering algorithms such as K-means, Fuzzy c-means and self-organized maps was used for image segmentation. Then artificial neural network was applied for image classification. For comparison, least square support vector machine approach was used for classification labeling of the scan images. The methodology shows how artificial ne…