Search results for "image classification"

showing 10 items of 114 documents

Support vector machines in engineering: an overview

2014

This paper provides an overview of the support vector machine SVM methodology and its applicability to real-world engineering problems. Specifically, the aim of this study is to review the current state of the SVM technique, and to show some of its latest successful results in real-world problems present in different engineering fields. The paper starts by reviewing the main basic concepts of SVMs and kernel methods. Kernel theory, SVMs, support vector regression SVR, and SVM in signal processing and hybridization of SVMs with meta-heuristics are fully described in the first part of this paper. The adoption of SVMs in engineering is nowadays a fact. As we illustrate in this paper, SVMs can …

Computer Science::Machine LearningBeamformingData processingSignal processingGeneral Computer ScienceContextual image classificationComputer sciencebusiness.industryMachine learningcomputer.software_genreSupport vector machineComputingMethodologies_PATTERNRECOGNITIONKernel methodState (computer science)Artificial intelligenceData miningbusinesscomputerDecoding methodsWiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
researchProduct

Learning spatial filters for multispectral image segmentation.

2010

International audience; We present a novel filtering method for multispectral satel- lite image classification. The proposed method learns a set of spatial filters that maximize class separability of binary support vector machine (SVM) through a gradient descent approach. Regularization issues are discussed in detail and a Frobenius-norm regularization is proposed to efficiently exclude uninformative filters coefficients. Experiments car- ried out on multiclass one-against-all classification and tar- get detection show the capabilities of the learned spatial fil- ters.

Computer Science::Machine LearningMultispectral image0211 other engineering and technologies02 engineering and technology01 natural sciencesRegularization (mathematics)010104 statistics & probability[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]Life ScienceComputer visionSegmentation0101 mathematicsLarge margin method021101 geological & geomatics engineeringMathematicsImage segmentationContextual image classificationPixelbusiness.industryPattern recognitionImage segmentationSupport vector machineComputingMethodologies_PATTERNRECOGNITIONmultispectral imageSpatial FilteringArtificial intelligenceGradient descentbusiness
researchProduct

Towards a Hierarchical Multitask Classification Framework for Cultural Heritage

2018

Digital technologies such as 3D imaging, data analytics and computer vision opened the door to a large set of applications in cultural heritage. Digital acquisition of a cultural assets takes nowadays a couple of seconds thanks to the achievements in 2D and 3D acquisition technologies. However, enriching these cultural assets with labels and relevant metadata is still not fully automatized especially due to their nature and specificities. With the recent publication of several cultural heritage datasets, many researchers are tackling the challenge of effectively classifying and annotating digital heritage. The challenges that are often addressed are related to visual recognition and image c…

Computer scienceData field02 engineering and technology[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Multitask ClassificationCultural diversity0202 electrical engineering electronic engineering information engineering[INFO]Computer Science [cs]Digital preservationComputingMilieux_MISCELLANEOUSContextual image classificationDigital heritagebusiness.industryDeep learningConvolutional Neural Networks[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]020206 networking & telecommunicationsData scienceMetadataCultural heritageDigital preservationCultural heritage020201 artificial intelligence & image processingArtificial intelligencebusinessClassifier (UML)
researchProduct

Kernel-Based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection

2008

The multitemporal classification of remote sensing images is a challenging problem, in which the efficient combination of different sources of information (e.g., temporal, contextual, or multisensor) can improve the results. In this paper, we present a general framework based on kernel methods for the integration of heterogeneous sources of information. Using the theoretical principles in this framework, three main contributions are presented. First, a novel family of kernel-based methods for multitemporal classification of remote sensing images is presented. The second contribution is the development of nonlinear kernel classifiers for the well-known difference and ratioing change detectio…

Computer scienceFeature vectorData classificationcomputer.software_genreKernel (linear algebra)Composite kernelMultitemporal classificationElectrical and Electronic EngineeringSupport vector domain description (SVDD)Remote sensingTelecomunicacionesSupport vector machinesContextual image classificationbusiness.industryKernel methodsPattern recognitionSupport vector machineKernel methodKernel (image processing)Change detectionGeneral Earth and Planetary Sciences3325 Tecnología de las TelecomunicacionesArtificial intelligenceData miningInformation fusionbusinessMultisourcecomputerChange detectionIEEE Transactions on Geoscience and Remote Sensing
researchProduct

Structured Output SVM for Remote Sensing Image Classification

2011

Traditional kernel classifiers assume independence among the classification outputs. As a consequence, each misclassification receives the same weight in the loss function. Moreover, the kernel function only takes into account the similarity between input values and ignores possible relationships between the classes to be predicted. These assumptions are not consistent for most of real-life problems. In the particular case of remote sensing data, this is not a good assumption either. Segmentation of images acquired by airborne or satellite sensors is a very active field of research in which one tries to classify a pixel into a predefined set of classes of interest (e.g. water, grass, trees,…

Computer scienceMultispectral imageTheoretical Computer ScienceSet (abstract data type)Kernel (linear algebra)One-class classificationRemote sensingSupport vector machinesStructured support vector machinePixelContextual image classificationbusiness.industryKernel methodsPattern recognitionLand use classificationSupport vector machineTree (data structure)Kernel methodHardware and ArchitectureControl and Systems EngineeringModeling and SimulationKernel (statistics)Radial basis function kernelSignal ProcessingStructured output learningArtificial intelligenceTree kernelStructured output learning; Support vector machines; Kernel methods; Land use classificationbusinessInformation SystemsJournal of Signal Processing Systems
researchProduct

A multi-process system for HEp-2 cells classification based on SVM

2016

An automatic system for pre-segmented IIF images analysis was developed.A non-standard pipeline for supervised image classification was adopted.The system uses a two-level pyramid to retain some spatial information.From each cell image 216 features are extracted.15 SVM classifiers one-against-one have been implemented. This study addresses the classification problem of the HEp-2 cells using indirect immunofluorescence (IIF) image analysis, which can indicate the presence of autoimmune diseases by finding antibodies in the patient serum. Recently, studies have shown that it is possible to identify the cell patterns using IIF image analysis and machine learning techniques. In this paper we de…

Computer scienceSVM02 engineering and technologyImmunofluorescencecomputer.software_genre030218 nuclear medicine & medical imagingImage (mathematics)03 medical and health sciences0302 clinical medicineArtificial IntelligencePyramid0202 electrical engineering electronic engineering information engineeringmedicinePyramid (image processing)Spatial analysisAccuracy1707Contextual image classificationmedicine.diagnostic_testFeatures reductionIndirect immunofluorescencePipeline (software)Class (biology)Settore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)StainingSupport vector machineHep-2 cells classificationSignal Processing020201 artificial intelligence & image processingComputer Vision and Pattern RecognitionData miningcomputerSoftware
researchProduct

Toward morphological thoracic EIT: major signal sources correspond to respective organ locations in CT.

2012

Lung and cardiovascular monitoring applications of electrical impedance tomography (EIT) require localization of relevant functional structures or organs of interest within the reconstructed images. We describe an algorithm for automatic detection of heart and lung regions in a time series of EIT images. Using EIT reconstruction based on anatomical models, candidate regions are identified in the frequency domain and image-based classification techniques applied. The algorithm was validated on a set of simultaneously recorded EIT and CT data in pigs. In all cases, identified regions in EIT images corresponded to those manually segmented in the matched CT image. Results demonstrate the abilit…

Computer scienceSwine0206 medical engineeringBiomedical Engineering02 engineering and technologyIterative reconstructionSignal030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineElectric ImpedanceImage Processing Computer-AssistedAnimalsComputer visionElectrical impedance tomographyLungTomographyContextual image classificationbusiness.industryReproducibility of ResultsHeartSignal Processing Computer-AssistedImage segmentation020601 biomedical engineeringFrequency domainRadiography ThoracicArtificial intelligencebusinessTomography X-Ray ComputedAlgorithmsIEEE transactions on bio-medical engineering
researchProduct

Interactive Pansharpening and Active Classification in Remote Sensing

2013

This chapter presents two multimodal prototypes for remote sensing image classification where user interaction is an important part of the system. The first one applies pansharpening techniques to fuse a panchromatic image and a multispectral image of the same scene to obtain a high resolution (HR) multispectral image. Once the HR image has been classified the user can interact with the system to select a class of interest. The pansharpening parameters are then modified to increase the system accuracy for the selected class without deteriorating the performance of the classifier on the other classes. The second prototype utilizes Bayesian modeling and inference to implement active learning …

ComputingMethodologies_PATTERNRECOGNITIONContextual image classificationKernel (image processing)PixelComputer scienceMultispectral imageComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONDecision boundaryLinear discriminant analysisClassifier (UML)Panchromatic filmRemote sensing
researchProduct

Deep CNN-ELM Hybrid Models for Fire Detection in Images

2018

In this paper, we propose a hybrid model consisting of a Deep Convolutional feature extractor followed by a fast and accurate classifier, the Extreme Learning Machine, for the purpose of fire detection in images. The reason behind using such a model is that Deep CNNs used for image classification take a very long time to train. Even with pre-trained models, the fully connected layers need to be trained with backpropagation, which can be very slow. In contrast, we propose to employ the Extreme Learning Machine (ELM) as the final classifier trained on pre-trained Deep CNN feature extractor. We apply this hybrid model on the problem of fire detection in images. We use state of the art Deep CNN…

Contextual image classificationArtificial neural networkComputer sciencebusiness.industryPattern recognition02 engineering and technologyConvolutional neural networkBackpropagationSupport vector machine03 medical and health sciences0302 clinical medicineSoftmax function0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencebusinessClassifier (UML)030217 neurology & neurosurgeryExtreme learning machine
researchProduct

Support Vector Machines for Crop Classification Using Hyperspectral Data

2003

In this communication, we propose the use of Support Vector Machines (SVM) for crop classification using hyperspectral images. SVM are benchmarked to well–known neural networks such as multilayer perceptrons (MLP), Radial Basis Functions (RBF) and Co-Active Neural Fuzzy Inference Systems (CANFIS). Models are analyzed in terms of efficiency and robustness, which is tested according to their suitability to real–time working conditions whenever a preprocessing stage is not possible. This can be simulated by considering models with and without a preprocessing stage. Four scenarios (128, 6, 3 and 2 bands) are thus evaluated. Several conclusions are drawn: (1) SVM yield better outcomes than neura…

Contextual image classificationArtificial neural networkbusiness.industryComputer scienceHyperspectral imagingFuzzy control systemPerceptronMachine learningcomputer.software_genreFuzzy logicSupport vector machineComputingMethodologies_PATTERNRECOGNITIONRobustness (computer science)Radial basis functionArtificial intelligencebusinesscomputer
researchProduct