Search results for "image segmentation"
showing 10 items of 234 documents
Deep multimodal fusion for semantic image segmentation: A survey
2021
International audience; Recent advances in deep learning have shown excellent performance in various scene understanding tasks. However, in some complex environments or under challenging conditions, it is necessary to employ multiple modalities that provide complementary information on the same scene. A variety of studies have demonstrated that deep multimodal fusion for semantic image segmentation achieves significant performance improvement. These fusion approaches take the benefits of multiple information sources and generate an optimal joint prediction automatically. This paper describes the essential background concepts of deep multimodal fusion and the relevant applications in compute…
2D virtual texture on 3D real object with coded structured light
2008
Augmented reality is used to improve color segmentation on human body or on precious no touch artifacts. We propose a technique to project a synthesized texture on real object without contact. Our technique can be used in medical or archaeological application. By projecting a suitable set of light patterns onto the surface of a 3D real object and by capturing images with a camera, a large number of correspondences can be found and the 3D points can be reconstructed. We aim to determine these points of correspondence between cameras and projector from a scene without explicit points and normals. We then project an adjusted texture onto the real object surface. We propose a global and automat…
Iteratively Learning a Liver Segmentation Using Probabilistic Atlases: Preliminary Results
2016
This works deals with the concept of liver segmentation by using a priori information based on probabilistic atlases and segmentation learning based of previous steps. A probabilistic atlas is here understood as a probability or membership map that tells how likely is that a point belongs to a shape drawn from the shape distribution at hand. We devise a procedure to segment Perfusion Magnetic Resonance liver images that combines both: a probabilistic atlas of the liver and a segmentation algorithm based on global information of previous simpler segmentation steps, local information from close segmented slices and finally a mathematical morphology procedure, namely viscous reconstruction, to…
A new image segmentation approach using community detection algorithms
2015
Image segmentation has an important role in many image processing applications. Several methods exist for segmenting an image. However, this technique is still a relatively open topic for which various research works are regularly presented. With the recent developments on complex networks theory, image segmentation techniques based on graphs has considerably improved. In this paper, we present a new perspective of image segmentation, by applying three of the most efficient community detection algorithms, Louvain, infomap and stability optimization based on the louvain algorithm, and we extract communities in which the highest modularity feature is achieved. After we show that this measure …
Automatic skull stripping in MRI based on morphological filters and fuzzy c-means segmentation
2012
In this paper a new automatic skull stripping method for T1-weighted MR image of human brain is presented. Skull stripping is a process that allows to separate the brain from the rest of tissues. The proposed method is based on a 2D brain extraction making use of fuzzy c-means segmentation and morphological operators applied on transversal slices. The approach is extended to the 3D case, taking into account the result obtained from the preceding slice to solve the organ splitting problem. The proposed approach is compared with BET (Brain Extraction Tool) implemented in MRIcro software.
Efficient Multi-scale Patch-Based Segmentation
2015
The objective of this paper is to devise an efficient and accurate patch-based method for image segmentation. The method presented in this paper builds on the work of Wu et al. [14] with the introduction of a compact multi-scale feature representation and heuristics to speed up the process. A smaller patch representation along with hierarchical pruning allowed the inclusion of more prior knowledge, resulting in a more accurate segmentation. We also propose an intuitive way of optimizing the search strategy to find similar voxel, making the method computationally efficient. An additional approach at improving the speed was explored with the integration of our method with Optimised PatchMatch…
Filter Bank: a Directional Approach for Retinal Vessel Segmentation
2017
It is well known that retinal diseases are sometimes identified by tortuosity of the vessels, presence of exudates and hemorrhages while lesions of tissues are associated to diabetic retinopathy, retinopathy of prematurity and more general cerebrovascular problems. One of the main issues in this research field is detecting small curvilinear structures, thus the aim of this contribution is to introduce a non-supervised and automated methodology to detect features such as curvilinear structures in retinal images. The core of the proposed methodology consists in using an approach that resembles the “a trous” wavelet algorithm. With respect to the standard Gabor analysis our methodology is base…
Unsupervised image processing scheme for transistor photon emission analysis in order to identify defect location
2015
International audience; The study of the light emitted by transistors in a highly scaled complementary metal oxide semiconductor (CMOS) integrated circuit (IC) has become a key method with which to analyze faulty devices, track the failure root cause, and have candidate locations for where to start the physical analysis. The localization of defective areas in IC corresponds to a reliability check and gives information to the designer to improve the IC design. The scaling of CMOS leads to an increase in the number of active nodes inside the acquisition area. There are also more differences between the spot’s intensities. In order to improve the identification of all of the photon emission sp…
Fully automatic multispectral MR image segmentation of prostate gland based on the fuzzy C-means clustering algorithm
2017
Prostate imaging is a very critical issue in the clinical practice, especially for diagnosis, therapy, and staging of prostate cancer. Magnetic Resonance Imaging (MRI) can provide both morphologic and complementary functional information of tumor region. Manual detection and segmentation of prostate gland and carcinoma on multispectral MRI data is not easily practicable in the clinical routine because of the long times required by experienced radiologists to analyze several types of imaging data. In this paper, a fully automatic image segmentation method, exploiting an unsupervised Fuzzy C-Means (FCM) clustering technique for multispectral T1-weighted and T2-weighted MRI data processing, is…
Extracting cloud motion from satellite image sequences
2004
This paper present a new technique for the estimation of cloud motion, using a sequence of infrared satellite images. It can be considered a challenging task due to the complexity of phenomena implied, as non-linear events and a non-rigid motion. In this circumstances most motion models are not suitable and new algorithms have to be developed. We propose a novel method, combining an Automatic Multilevel Thresholding for image segmentation, a Block Matching Algorithm (BMA) and a best candidate block search along with a vector median regularization.