Search results for "image segmentation"

showing 10 items of 234 documents

Supershape Recovery from 3D Data Sets

2006

In this paper, we apply supershapes and R-functions to surface recovery from 3D data sets. Individual supershapes are separately recovered from a segmented mesh. R-functions are used to perform Boolean operations between the reconstructed parts to obtain a single implicit equation of the reconstructed object that is used to define a global error reconstruction function. We present surface recovery results ranging from single synthetic data to real complex objects involving the composition of several supershapes and holes.

Implicit functionbusiness.industrySignal reconstructionImage segmentationFunction (mathematics)Iterative reconstructionSynthetic dataComputer visionArtificial intelligencebusinessBoolean functionAlgorithmStandard Boolean modelMathematics2006 International Conference on Image Processing
researchProduct

Simultaneous segmentation and beam-hardening correction in computed microtomography of rock cores

2013

We propose a post-reconstruction correction procedure for the beam-hardening artifact that neither requires knowledge of the X-ray spectrum nor of the attenuation coefficients in multi-mineral geologic samples. The beam-hardening artifact in polychromatic X-ray computer tomography (CT) hampers segmentation of the phase assemblage in geologic samples. We show that in cylindrically shaped samples like rock cores, the X-ray attenuation value for a single phase depends mainly on the distance from the center of the cylinder. This relationship could be easily extracted from the CT data for every phase and used to infer the presence of these phases at all positions in the sample. Our new approach …

Artifact (error)Materials scienceAttenuationPhase (waves)MineralogyCylinderGeometrySegmentationImage segmentationTomographyComputers in Earth SciencesSample (graphics)Information SystemsComputers & Geosciences
researchProduct

Computer-Assisted Approaches for Uterine Fibroid Segmentation in MRgFUS Treatments: Quantitative Evaluation and Clinical Feasibility Analysis

2019

Nowadays, uterine fibroids can be treated using Magnetic Resonance guided Focused Ultrasound Surgery (MRgFUS), which is a non-invasive therapy exploiting thermal ablation. In order to measure the Non-Perfused Volume (NPV) for treatment response assessment, the ablated fibroid areas (i.e., Region of Treatment, ROT) are manually contoured by a radiologist. The current operator-dependent methodology could affect the subsequent follow-up phases, due to the lack of result repeatability. In addition, this fully manual procedure is time-consuming, considerably increasing execution times. These critical issues can be addressed only by means of accurate and efficient automated Pattern Recognition ap…

ING-INF/06 - BIOINGEGNERIA ELETTRONICA E INFORMATICAmedicine.medical_specialtyTreatment responseUterine fibroidsComputer scienceMagnetic Resonance guided Focused Ultrasound Surgery0206 medical engineeringThermal ablation02 engineering and technologyClinical feasibility; Computer-assisted medical image segmentation; Magnetic resonance guided focused ultrasound surgery; Non-Perfused volume assessment; Pattern recognition; Uterine fibroidsPattern RecognitionClinical feasibilityING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI030218 nuclear medicine & medical imagingMagnetic resonance guided focused ultrasound surgeryMagnetic Resonance guided Focused Ultrasound Surgery Uterine fibroids03 medical and health sciences0302 clinical medicineNon-Perfused Volume assessmentmedicineUterine fibroidSegmentationUterine fibroids Indexed keywordsSettore INF/01 - InformaticaComputer Science (all)INF/01 - INFORMATICAmedicine.disease020601 biomedical engineeringComputer-assisted medical image segmentation; Pattern Recognition; Magnetic Resonance guided Focused Ultrasound Surgery Uterine fibroids; Non-Perfused Volume assessment; Clinical feasibility;Decision Sciences (all)Pattern recognition (psychology)RadiologyUterine fibroidsComputer-assisted medical image segmentation
researchProduct

Remote sensing image segmentation by active queries

2012

Active learning deals with developing methods that select examples that may express data characteristics in a compact way. For remote sensing image segmentation, the selected samples are the most informative pixels in the image so that classifiers trained with reduced active datasets become faster and more robust. Strategies for intelligent sampling have been proposed with model-based heuristics aiming at the search of the most informative pixels to optimize model's performance. Unlike standard methods that concentrate on model optimization, here we propose a method inspired in the cluster assumption that holds in most of the remote sensing data. Starting from a complete hierarchical descri…

Active learningComputer scienceActive learning (machine learning)SvmMultispectral image0211 other engineering and technologies02 engineering and technologyMultispectral imageryClusteringMultispectral pattern recognitionArtificial Intelligence0202 electrical engineering electronic engineering information engineeringSegmentationCluster analysis021101 geological & geomatics engineeringRetrievalPixelbusiness.industryLinkageHyperspectral imagingPattern recognitionRemote sensingSupport vector machineMultiscale image segmentationHyperspectral imageryPixel ClassificationSignal Processing020201 artificial intelligence & image processingHyperspectral Data ClassificationComputer Vision and Pattern RecognitionArtificial intelligencebusinessAlgorithmsSoftwareModel
researchProduct

Textile and tile pattern design automatic cataloguing using detection of the plane symmetry group

2004

We present an integrated management system of pattern design for the textile and tile industries providing automatic cataloguing capabilities based on the application of the scientific theory of symmetry groups. To do this, a process of analysis is performed which starts from an initial image of the decorative element, which in turn is subjected to a number of segmentation and labelling operators that allow to detect the objects present in the image. These objects are vectorized, compared, and their isometries obtained; subsequently they are grouped and the isometries of the groups of objects detected. Finally, a composition analysis is carried out that, on the basis of the repetitions and …

Image texturebusiness.industryComputer visionImage segmentationArtificial intelligenceSymmetry groupWallpaper groupSymmetry (geometry)businessParallelogramGroup theoryObject detectionMathematicsProceedings Computer Graphics International 2003
researchProduct

2D virtual texture on 3D real object with coded structured light

2008

Augmented reality is used to improve color segmentation on human body or on precious no touch artifacts. We propose a technique to project a synthesized texture on real object without contact. Our technique can be used in medical or archaeological application. By projecting a suitable set of light patterns onto the surface of a 3D real object and by capturing images with a camera, a large number of correspondences can be found and the 3D points can be reconstructed. We aim to determine these points of correspondence between cameras and projector from a scene without explicit points and normals. We then project an adjusted texture onto the real object surface. We propose a global and automat…

Computer scienceColor imagebusiness.industryEpipolar geometryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage processingImage segmentationObject (computer science)law.inventionProjectorlawComputer graphics (images)Augmented realitySegmentationComputer visionArtificial intelligencebusinessComputingMethodologies_COMPUTERGRAPHICSStructured lightImage Processing: Machine Vision Applications
researchProduct

Fuzzy Distributed Genetic Approaches for Image Segmentation

2010

This paper presents a new image segmentation algorithm (called FDGA-Seg) based on a combination of fuzzy logic, multiagent systems and genetic algorithms. We propose to use a fuzzy representation of the image site labels by introducing some imprecision in the gray tones values. The distributivity of FDGA-Seg comes from the fact that it is designed around a MultiAgent System (MAS) working with two different architectures based on the master-slave and island models. A rich set of experimental segmentation results given by FDGA-Seg is discussed and compared to the ICM results in the last section.

Markov random fieldGeneral Computer ScienceComputer sciencebusiness.industrySegmentation-based object categorizationComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-space segmentationMarkov processImage processingImage segmentationFuzzy logicsymbols.namesakeGenetic algorithmsymbolsSegmentationArtificial intelligencebusinessJournal of Computing and Information Technology
researchProduct

Automatic detection of cervical cells in Pap-smear images using polar transform and k-means segmentation

2016

We introduce a novel method of cell detection and segmentation based on a polar transformation. The method assumes that the seed point of each candidate is placed inside the nucleus. The polar representation, built around the seed, is segmented using k-means clustering into one candidate-nucleus cluster, one candidate-cytoplasm cluster and up to three miscellaneous clusters, representing background or surrounding objects that are not part of the candidate cell. For assessing the natural number of clusters, the silhouette method is used. In the segmented polar representation, a number of parameters can be conveniently observed and evaluated as fuzzy memberships to the non-cell class, out of …

business.industryk-means clustering02 engineering and technologyImage segmentationElectronic mail030218 nuclear medicine & medical imagingSilhouette03 medical and health sciences0302 clinical medicine0202 electrical engineering electronic engineering information engineeringCluster (physics)Polar020201 artificial intelligence & image processingSegmentationComputer visionArtificial intelligencebusinessCluster analysisMathematics2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)
researchProduct

Quantification of the heterogeneity of prognostic cellular biomarkers in ewing sarcoma using automated image and random survival forest analysis

2014

Driven by genomic somatic variation, tumour tissues are typically heterogeneous, yet unbiased quantitative methods are rarely used to analyse heterogeneity at the protein level. Motivated by this problem, we developed automated image segmentation of images of multiple biomarkers in Ewing sarcoma to generate distributions of biomarkers between and within tumour cells. We further integrate high dimensional data with patient clinical outcomes utilising random survival forest (RSF) machine learning. Using material from cohorts of genetically diagnosed Ewing sarcoma with EWSR1 chromosomal translocations, confocal images of tissue microarrays were segmented with level sets and watershed algorithm…

PathologyCytoplasmMicroarrayslcsh:MedicineCohort StudiesMedicine and Health Scienceslcsh:ScienceMultidisciplinaryTissue microarrayApplied MathematicsPrognosisRandom forestBioassays and Physiological AnalysisOncologyFeature (computer vision)Research DesignPhysical SciencesBiomarker (medicine)SarcomaAnatomyAlgorithmsStatistics (Mathematics)Research Articlemedicine.medical_specialtyComputer and Information SciencesHistologyClinical Research DesignCD99Feature selectionBone NeoplasmsComputational biologySarcoma EwingBiology12E7 AntigenResearch and Analysis MethodsAntigens CDArtificial IntelligenceCell Line TumormedicineCancer Detection and DiagnosisBiomarkers TumorHumansStatistical MethodsCell Nucleuslcsh:RBiology and Life SciencesComputational BiologyImage segmentationmedicine.diseaselcsh:QCell Adhesion MoleculesMathematicsPLoS ONE
researchProduct

Features extraction on complex images

2005

The accessibility of inexpensive and powerful computers has allowed true digital holography to be used for industrial inspection using microscopy. This technique allows the capture of a complex image (i.e., one containing magnitude and phase), and the reconstruction of the phase and magnitude information. Digital holograms give a new dimension to texture analysis, since the topology information can be used as an additional way to extract features. This new technique can be used to extend previous work on the image segmentation of patterned wafers for defect detection. The paper presents a comparison between the features obtained using Gabor filtering on complex images under illumination and…

business.industryComputer scienceFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONHolographyFilter (signal processing)Image segmentationIterative reconstructionlaw.inventionImage texturelawDigital holographic microscopyComputer visionArtificial intelligencebusinessDigital holographyFeature detection (computer vision)
researchProduct