Search results for "init"

showing 10 items of 6629 documents

Typification of eight names in Hieracium (Asteraceae)

2012

Eight names in Hieracium (H. atrovirens Froel., H. crinitum Sm., H. lucidum Guss., H. pallidum Biv., H. racemosum subsp. todaroanum Zahn, H. siculum Guss., H. siculum var. minus Guss., H. symphytifolium Froel.), the descriptions of which are based totally or in part on Sicilian material, are typified. Hieracium racemosum subsp. todaroanum is treated as a synonym of H. crinitum, and H. siculum and H. siculum var. minus are treated as synonyms of H. symphytifolium. Hieracium atrovirens is recognized as a subspecies of H. murorum L. (H. murorum subsp. atrovirens (Froel.) Raimondo & Di Grist.).

0106 biological sciences0301 basic medicineH. atrovirenH. pallidumPlant Science010603 evolutionary biology01 natural sciencesH. racemosum subsp. todaroanum03 medical and health sciencesH. siculumH. siculum var. minuBotanyTypificationHieraciumMediterranean regionNomenclatureEcology Evolution Behavior and Systematicsvascular floraH. symphytifoliumHieraciumbiologySettore BIO/02 - Botanica SistematicaH. crinitumAsteraceaebiology.organism_classification030104 developmental biologynomenclaturetypificationH. lucidum
researchProduct

Sugar exchanges in arbuscular mycorrhiza: RiMST5 and RiMST6, two novel Rhizophagus irregularis monosaccharide transporters, are involved in both suga…

2016

SPE IPM INRA UB CT1; International audience; Arbuscular mycorrhizal (AM) fungi are associated with about 80% of land plants. AM fungi provide inorganic nutrients to plants and in return up to 20% of the plant-fixed CO2 is transferred to the fungal symbionts. Since AM fungi are obligate biotrophs, unraveling how sugars are provided to the fungus partner is a key for understanding the functioning of the symbiosis. In this study, we identified two new monosaccharide transporters from Rhizophagus irregularis (RiMST5 and RiMST6) that we characterized as functional high affinity monosaccharide transporters. RiMST6 was characterized as a glucose specific, high affinity H(+) co-transporter. We prov…

0106 biological sciences0301 basic medicineRhizophagus irregularisLightPhysiology[SDV]Life Sciences [q-bio]Plant Sciencearbuscular mycorrhizal fungus01 natural sciencesrhizophagus irregularisGlomeromycotaSoilGene Expression Regulation PlantMycorrhizaeMedicagoPhylogeny2. Zero hungerMutualism (biology)Fungal proteinReverse Transcriptase Polymerase Chain Reactionglucose specificMonosaccharidesfood and beverageshigh affinity H+ co-transporterhigh affinity transporterArbuscular mycorrhizaBiochemistry[SDE]Environmental SciencesFungusSaccharomyces cerevisiaeBiologyFungal Proteins03 medical and health sciencesSymbiosisStress PhysiologicalBotanyGenetics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyRNA MessengerGlomeromycotaObligateCell MembraneGenetic Complementation TestfungiMST5MST6Membrane Transport Proteins15. Life on landmonosaccharide transporterbiology.organism_classification030104 developmental biologyGlucose010606 plant biology & botany
researchProduct

Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat

2017

Arbuscular mycorrhizal (AM) symbiosis is generally considered to be effective in ameliorating the plant tolerance to salt stress. Unfortunately, the comprehension of the mechanisms implicated in salinity stress alleviation by AM symbiosis is far from being complete. Thus, an experiment was performed by growing durum wheat (Triticum durum Desf.) plants under salt-stress conditions to evaluate the influence of AM symbiosis on both the plant growth and the regulation of a number of genes related to salt stress and nutrient uptake. Durum wheat plants were grown outdoors in pots in absence or in presence of salt stress and with or without AM fungi inoculation. The inoculum consisted of a mixture…

0106 biological sciences0301 basic medicineRhizophagus irregularisSalinityLeavesGene Expressionlcsh:MedicinePlant SciencePlant RootsPolymerase Chain ReactionPhysical Chemistry01 natural sciencesNutrientMycorrhizaePlant Resistance to Abiotic Stresslcsh:ScienceTriticumBiomass (ecology)MultidisciplinaryEcologyPlant Anatomyfood and beveragesSalt TolerancePlantsSettore AGR/02 - Agronomia E Coltivazioni ErbaceeChemistryPlant PhysiologyPhysical SciencesWheatSymbiosiResearch ArticleBiology03 medical and health sciencesSymbiosisSettore AGR/07 - Genetica AgrariaPlant-Environment InteractionsBotanyGeneticsPlant DefensesGene RegulationGrassesSymbiosisBiochemistry Genetics and Molecular Biology (all)InoculationGene Expression ProfilingPlant EcologyEcology and Environmental Scienceslcsh:RfungiOrganismsFungiBiology and Life SciencesPlant RootPlant Pathologybiology.organism_classificationSporeSalinitySpecies Interactions030104 developmental biologyAgricultural and Biological Sciences (all)Chemical PropertiesArbuscular mycorrhizal symbiosislcsh:QSalt-Tolerance010606 plant biology & botanyPLOS ONE
researchProduct

Unraveling Salt Tolerance in Halophytes: A Comparative Study on Four Mediterranean Limonium Species with Different Geographic Distribution Patterns

2017

[EN] We have performed an extensive study on the responses to salt stress in four related Limonium halophytes with different geographic distribution patterns, during seed germination and early vegetative growth. The aims of the work were twofold: to establish the basis for the different chorology of these species, and to identify relevant mechanisms of salt tolerance dependent on the control of ion transport and osmolyte accumulation. Seeds were germinated in vitro, in the presence of increasing NaCl concentrations, and subjected to ¿recovery of germination¿ tests; germination percentages and velocity were determined to establish the relative tolerance and competitiveness of the four Limoni…

0106 biological sciences0301 basic medicineSalt marshVegetative reproductionLimoniumSalt stressBOTANICAPlant ScienceBiologylcsh:Plant culture01 natural sciences03 medical and health sciencesHalophyteBotanyBIOQUIMICA Y BIOLOGIA MOLECULARClimate changelcsh:SB1-1110Original ResearchIon transportSalt glandgeographygeography.geographical_feature_categorySalt glandsbiology.organism_classificationSeed germinationSalinity toleranceSalinity030104 developmental biologyOsmolytesOsmolyteGerminationSalt marsh010606 plant biology & botany
researchProduct

Cranial suture biomechanics inMetoposaurus krasiejowensis(Temnospondyli, Stereospondyli) from the upper Triassic of Poland

2019

Cranial sutures connect adjacent bones of the skull and play an important role in the absorption of stresses that may occur during different activities. The Late Triassic temnospondyl amphibian Metoposaurus krasiejowensis has been extensively studied over the years in terms of skull biomechanics, but without a detailed description of the function of cranial sutures. In the present study, 34 thin sections of cranial sutures were examined in order to determine their histovariability and interpret their biomechanical role in the skull. The histological model was compared with three-dimensional-finite element analysis (FEA) simulations of the skull under bilateral and lateral biting as well as …

0106 biological sciences0301 basic medicineStereospondylifinite element analysisBiologyMetoposaurus010603 evolutionary biology01 natural sciencesdermal bonesAmphibianshistology03 medical and health sciencesmedicineAnimalsCompression (geology)Fibrous jointSkull roofFossilsSkullTemnospondyliCranial SuturesAnatomypalaeoecologybiology.organism_classificationBiomechanical PhenomenaSkull030104 developmental biologymedicine.anatomical_structureBitingAnimal Science and ZoologyPolandDevelopmental BiologyJournal of Morphology
researchProduct

Anthocyanins of Coloured Wheat Genotypes in Specific Response to SalStress

2018

The present study investigated the effect of salt stress on the development of adaptive responses and growth parameters of different coloured wheat genotypes. The different coloured wheat genotypes have revealed variation in the anthocyanin content, which may affect the development of adaptive responses under increasing salinity stress. In the early stage of treatment with salt at a lower NaCl concentration (100 mM), anthocyanins and proline accumulate, which shows rapid development of the stress reaction. A dose-dependent increase in flavonol content was observed for wheat genotypes with more intense purple-blue pigmentation after treatment with 150 mM and 200 mM NaCl. The content of Na⁺ a…

0106 biological sciences0301 basic medicineflavonolMDAColorPharmaceutical ScienceSodium Chloride01 natural sciencesArticleSalinity stressAnalytical Chemistrysalinitylcsh:QD241-44103 medical and health scienceschemistry.chemical_compoundlcsh:Organic chemistryDry weightStress PhysiologicalwheatDrug DiscoveryGenotypeDry matterProlinePhysical and Theoretical ChemistryprolineTriticumPigmentationChemistryOrganic Chemistryfood and beveragesSalt ToleranceanthocyaninsSalinityHorticulture030104 developmental biologyChemistry (miscellaneous)AnthocyaninMolecular MedicineAfter treatment010606 plant biology & botanyMolecules
researchProduct

Characterization of the Heme Pocket Structure and ligand binding kinetics of non-symbiotic hemoglobins from the model legume Lotus japonicus

2017

14 Pags.- 6 Figs. This article is part of the Research Topic: Advances in legume research ( http://journal.frontiersin.org/researchtopic/4288/advances-in-legume-research ). Copyright of the Authors through a Creative Commons Attribution License. This Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission.

0106 biological sciences0301 basic medicineligand bindingLotus japonicusMutantPlant Science01 natural sciencesheme cavity03 medical and health scienceschemistry.chemical_compoundnon-symbiotic hemoglobinsBiologyHemebiologyChemistryNitrosylationHexacoordinateNitric oxide dioxygenaseLigand (biochemistry)biology.organism_classificationAffinitiesChemistry030104 developmental biologyBiochemistryLotus japonicusnitric oxide dioxygenase010606 plant biology & botany
researchProduct

Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors

2019

Reactive oxygen species (ROS)-dependent signaling pathways from chloroplasts and mitochondria merge at the nuclear protein RADICAL-INDUCED CELL DEATH1 (RCD1). RCD1 interacts in vivo and suppresses the activity of the transcription factors ANAC013 and ANAC017, which mediate a ROS-related retrograde signal originating from mitochondrial complex III. Inactivation of RCD1 leads to increased expression of mitochondrial dysfunction stimulon (MDS) genes regulated by ANAC013 and ANAC017. Accumulating MDS gene products, including alternative oxidases (AOXs), affect redox status of the chloroplasts, leading to changes in chloroplast ROS processing and increased protection of photosynthetic apparatus.…

0106 biological sciences0301 basic medicineretrograde signalingChloroplastsArabidopsisPlant BiologyMitochondrion01 natural sciencesElectron Transport Complex IIIGene Expression Regulation PlantArabidopsisOXIDATIVE STRESS-RESPONSETranscriptional regulationCYCLIC ELECTRON FLOWBiology (General)Nuclear proteinANAC transcription factors1183 Plant biology microbiology virologyreactive oxygen speciesbiologyChemistryRETROGRADE REGULATIONGeneral NeuroscienceQRNuclear Proteinsfood and beveragesGeneral MedicinePlants Genetically Modified:Science::Biological sciences [DRNTU]Cell biologyMitochondriaChloroplastviherhiukkasetMedicineSignal transductionmitochondrial functionsResearch ArticleSignal TransductionQH301-705.5SciencemitokondriotGenetics and Molecular BiologyGeneral Biochemistry Genetics and Molecular BiologyPROTEIN COMPLEXESSIGNALING PATHWAYS03 medical and health scienceschloroplastStress PhysiologicalALTERNATIVE OXIDASESkasvitENZYME-ACTIVITIESredox signalingTranscription factorarabidopsis RCD1General Immunology and MicrobiologybiokemiaArabidopsis Proteinsta1182Biology and Life Sciencesbiology.organism_classification030104 developmental biologyCELL-DEATHPLANT-MITOCHONDRIAA. thalianaGeneral BiochemistryRetrograde signalingGENES-ENCODING MITOCHONDRIALproteiinit010606 plant biology & botanyTranscription Factors
researchProduct

Gaining Insight into Exclusive and Common Transcriptomic Features Linked to Drought and Salinity Responses across Fruit Tree Crops

2020

The present study aimed at identifying and mapping key genes expressed in root tissues involved in drought and salinity tolerance/resistance conserved among different fruit tree species. Twenty-six RNA-Seq samples were analyzed from six published studies in five plant species (Olea europaea, Vitis riparia Michx, Prunus mahaleb, Prunus persica, Phoenix dactylifera). This meta-analysis used a bioinformatic pipeline identifying 750 genes that were commonly modulated in three salinity studies and 683 genes that were commonly regulated among three drought studies, implying their conserved role in resistance/tolerance/response to these environmental stresses. A comparison was done on the genes th…

0106 biological sciences0301 basic medicinerootsdifferentially expressed genesabiotic stresses differentially expressed genes fruit crops meta-analysis RNA-seq roots transcriptomicsPlant ScienceBiologyQuantitative trait locus01 natural sciencesArticle03 medical and health scienceschemistry.chemical_compoundtranscriptomicsAuxinSettore AGR/07 - Genetica AgrariaBotanyDrug transmembrane transportGeneAbscisic acidEcology Evolution Behavior and Systematicschemistry.chemical_classificationEcologyAbiotic stressBotanyfood and beveragesfruit cropsabiotic stressesSalinitySettore AGR/03 - Arboricoltura Generale E Coltivazioni Arboreemeta-analysis030104 developmental biologychemistryQK1-989RNA-seqFruit tree010606 plant biology & botanyPlants
researchProduct

S1/5 Photoaffinity labeling and photoaffinity cross-linking of ATP synthase complexes

2008

0106 biological sciences0303 health sciencesPhotoaffinity labelingATP synthasebiologyChemistryBiophysicsCell Biology01 natural sciencesBiochemistry03 medical and health sciencesBiochemistrybiology.protein030304 developmental biology010606 plant biology & botanyBiochimica et Biophysica Acta (BBA) - Bioenergetics
researchProduct