Search results for "init"
showing 10 items of 6629 documents
Multiple low-frequency broad band gaps generated by a phononic crystal of periodic circular cavity sandwich plates
2017
Abstract We propose a new type of phononic crystal (PnC) composed of a periodic alternation of circular cavity sandwich plates. In the low-frequency regime, the crystal can modulate the propagation of flexural waves. Governing equations are deduced basing on the classical theory of coupled extensional and flexural vibrations of plates. The dispersion relation of the infinite PnC is calculated by combining the transfer matrix method with Bloch theory. The dynamic response of the PnC with finite unit cells is further studied with finite element analysis. An experiment is carried out to demonstrate the performance of the PnC in vibration isolation. Numerical results and experimental results bo…
Ultra-Wide Band Gap in Two-Dimensional Phononic Crystal with Combined Convex and Concave Holes
2017
A phononic crystal with an ultra‐wide band gap is proposed, whose unit cell consists of a cross‐like concave hole in the center and four square convex holes at the corners. The dispersion relations, modal kinetic energy ratio, and eigenmodes at edges of the band gaps are investigated by using the finite element method. The influence of the geometrical parameters of the convex and concave holes on the band gaps is further analyzed. After optimization, an ultra‐wide band gap with gap‐to‐midgap ratio of 156.0% is achieved, with the filling fraction keeping a relative small value. Numerical results illustrate that the combination of convex and concave holes is a practicable direction for struct…
Melting temperature prediction by thermoelastic instability: An ab initio modelling, for periclase (MgO)
2021
Abstract Melting temperature (TM) is a crucial physical property of solids and plays an important role for the characterization of materials, allowing us to understand their behavior at non-ambient conditions. The present investigation aims i) to provide a physically sound basis to the estimation of TM through a “critical temperature” (TC), which signals the onset of thermodynamic instability due to a change of the isothermal bulk modulus from positive to negative at a given PC-VC-TC point, such that (∂P/∂V)VC,TC = -(∂2F/∂V2) VC,TC = 0; ii) to discuss the case of periclase (MgO), for which accurate melting temperature observations as a function of pressure are available. Using first princip…
Tuning the electronic and magnetic properties of 2D g-GaN by H adsorption: An ab-initio study
2019
Abstract We have theoretically studied the structural, electronic and magnetic properties of the hydrogen adsorption on a honeycomb gallium-nitride two-dimensional monolayer (2D g-GaN). Results indicate that the band gap energy can be systematically tuned by the hydrogen coverage on the 2D g-GaN in the diluted limit. In addition, a total magnetic moment can be induced in the 2D g-GaN by hydrogen adsorption due to s-p interaction and band structure effects. Although hydrogen adsorption on top of nitrogen atoms shows the most stable energy in the 2D g-GaN, the most stable ferromagnetism -with a nonzero magnetic moment-is obtained when hydrogen is adsorbed on top of Ga atoms. These results ind…
Tandem laser-gas metal arc welding joining of 20 mm thick super duplex stainless steel: An experimental and numerical study
2020
The present work covers the topic of strains and stresses prediction in case of welded steel structures. Steel sheets of 20 mm thickness made in UR™2507Cu are welded using a laser and gas metal arc welding processes combination. The focused laser beam leads the arc in a Y-shape chamfer geometry. Both sources are 20 mm apart from each other in order to avoid any synergic effect with each other. In order to predict residual strain, a 3D unsteady numerical simulation has been developed in COMSOL finite element software. A volume heat source has been identified based on the temperature measurements made by 10 K-type thermocouples, implanted inside the workpiece. The 50 mm deep holes are drille…
A Computational Study on Crack Propagation in Bio-Inspired Lattices
2018
A computational preliminary study on the fracture behaviour of two kinds of finite-size bio-inspired lattice configurations is presented. The study draws inspiration from recent investigations aimed at increasing the fracture energy of some materials through small modifications of their microstructure. Nature provides several examples of strategies used to delay or arrest damage initiation and crack propagation. Striking examples are provided by the micro-architecture of several kinds of wood. In this study, the effects on crack propagations induced by architectural alterations inspired by the microstructure of wood are computationally investigated. In an age in which tight control of the m…
B-Scan image analysis for position and shape defect definition in plates
2016
Definition of size, shape and location of defects into a mechanical component is of extreme importance in the manufacturing industry in general and particularly in high-tech applications, and in applications that can become dangerous due to the structural failure of mechanical components. In this paper, a laser-UT system has been used to define position and shape of internal defects in aluminum plates. An infrared pulsed laser is used to generate ultrasonic waves in a point of the plate and a CW laser interferometer is used as receiver to acquire the out-of-plane displacements due to the ultrasonic waves in another point of the plate. The method consists of acquiring a B-Scan map on which s…
Mechanical characterisation of pentagonal gold nanowires in three different test configurations: A comparative study.
2019
Abstract Mechanical characterisation of individual nanostructures is a challenging task and can greatly benefit from the utilisation of several alternative approaches to increase the reliability of results. In the present work, we have measured and compared the elastic modulus of five-fold twinned gold nanowires (NWs) with atomic force microscopy (AFM) indentation in three different test configurations: three-point bending with fixed ends, three-point bending with free ends and cantilevered-beam bending. The free-ends condition was realized by introducing a novel approach where the NW is placed diagonally inside an inverted pyramid chemically etched in a silicon wafer. In addition, all thre…
An investigation into the fracture behaviour of honeycombs with density gradients
2020
International audience; In this study we perform an experimental and computational investigation about the fracture behaviour of polymer honeycombs presenting gradients in terms of lattice density. Such lattice relative density variations are introduced with the aim of mimicking the micro-morphology encountered in some natural materials, such as several kinds of woods, which seems related to the ability of the corresponding macro-material to delay the propagation of fracture under certain conditions. Starting from the conclusions of previous computational analyses, we perform a few experimental tensile tests on ABS model honeycombs obtained by additive manufacturing, with the aim of getting…
Interaction of carbon with microstructural defects in a W-Re matrix: An ab initio assessment
2019
The interaction of carbon atoms with point defects and the core of edge and screw dislocations with Burgers vector a 0 / 2 ⟨ 111 ⟩ in W and a W-Re matrix is studied by means of ab initio calculations. The structure and energetics of the ground-state atomic configurations are presented and rationalized. It is found that di-vacancies, which are thermally unstable in pure W according to the state-of-the-art ab initio calculations, can nucleate at C and Re-C complexes, which fill the gap in the explanation of the emergence of nanovoids observed experimentally under irradiation. Also, on the basis of the recent experimental evidence and our calculations, the temperature ranges for the manifestat…