Search results for "insulator"
showing 10 items of 228 documents
Effect of graphene substrate type on formation of Bi2Se3 nanoplates
2019
AbstractKnowledge of nucleation and further growth of Bi2Se3 nanoplates on different substrates is crucial for obtaining ultrathin nanostructures and films of this material by physical vapour deposition technique. In this work, Bi2Se3 nanoplates were deposited under the same experimental conditions on different types of graphene substrates (as-transferred and post-annealed chemical vapour deposition grown monolayer graphene, monolayer graphene grown on silicon carbide substrate). Dimensions of the nanoplates deposited on graphene substrates were compared with the dimensions of the nanoplates deposited on mechanically exfoliated mica and highly ordered pyrolytic graphite flakes used as refer…
Uhlmann number in translational invariant systems
2019
We define the Uhlmann number as an extension of the Chern number, and we use this quantity to describe the topology of 2D translational invariant Fermionic systems at finite temperature. We consider two paradigmatic systems and we study the changes in their topology through the Uhlmann number. Through the linear response theory we linked two geometrical quantities of the system, the mean Uhlmann curvature and the Uhlmann number, to directly measurable physical quantities, i.e. the dynamical susceptibility and to the dynamical conductivity, respectively.
Properties of native ultrathin aluminium oxide tunnel barriers
2003
We have investigated planar metal–insulator–metal tunnel junctions with aluminium oxide as the dielectricum. These oxide barriers were grown on an aluminium electrode in pure oxygen at room temperature till saturation. By applying the Simmons model we derived discrete widths of the tunnelling barrier, separated by Δs ≈ 0.38 nm. This corresponds to the addition of single layers of oxygen atoms. The minimum thickness of s0 ≈ 0.54 nm is then due to a double layer of oxygen. We found a strong and systematic dependence of the barrier height on the barrier thickness. Breakdown fields up to 5 GV m−1 were reached. They decreased strongly with increasing barrier thickness. Electrical breakdown could…
High-efficiency silicon-compatible photodetectors based on Ge quantum dots
2011
We report on high responsivity, broadband metal/insulator/semiconductor photodetectors with amorphous Ge quantum dots (a-Ge QDs) as the active absorbers embedded in a silicon dioxide matrix. Spectral responsivities between 1-4 A/W are achieved in the 500-900 nm wavelength range with internal quantum efficiencies (IQEs) as high as ∼700%. We investigate the role of a-Ge QDs in the photocurrent generation and explain the high IQE as a result of transport mechanisms via photoexcited QDs. These results suggest that a-Ge QDs are promising for high-performance integrated optoelectronic devices that are fully compatible with silicon technology in terms of fabrication and thermal budget. © 2011 Amer…
First experimental demonstration of a plasmonic MMI switch in 10 Gb/s true data traffic conditions
2012
We report the first experimental performance evaluation of a 75 um long plasmonic MMI switch, hetero-integrated on a SOI platform, operating with 10Gb/s data signals. The switch exhibits 2.9μs response time and 44.5% modulation depth while its extinction ratio varies from 5.4 to -1.5 dB for 35mW switching power. Error-free performance was achieved.
Temperature dependence of the non-local spin Seebeck effect in YIG/Pt nanostructures
2017
We study the transport of thermally excited non-equilibrium magnons through the ferrimagnetic insulator YIG using two electrically isolated Pt strips as injector and detector. The diffusing magnons induce a non-local inverse spin Hall voltage in the detector corresponding to the so-called non-local spin Seebeck effect (SSE). We measure the non-local SSE as a function of temperature and strip separation. In experiments at room temperature we observe a sign change of the non-local SSE voltage at a characteristic strip separation d0, in agreement with previous investigations. At lower temperatures however, we find a strong temperature dependence of d0. This suggests that both the angular momen…
Transcriptomic data from panarthropods shed new light on the evolution of insulator binding proteins in insects
2016
BACKGROUND: Body plan development in multi-cellular organisms is largely determined by homeotic genes. Expression of homeotic genes, in turn, is partially regulated by insulator binding proteins (IBPs). While only a few enhancer blocking IBPs have been identified in vertebrates, the common fruit fly Drosophila melanogaster harbors at least twelve different enhancer blocking IBPs. We screened recently compiled insect transcriptomes from the 1KITE project and genomic and transcriptomic data from public databases, aiming to trace the origin of IBPs in insects and other arthropods. RESULTS: Our study shows that the last common ancestor of insects (Hexapoda) already possessed a substantial numbe…
A large-energy-gap oxide topological insulator based on the superconductor BaBiO3
2013
Mixed-valent perovskite oxides based on BaBiO3 (BBO) are, like cuperates, well-known high-Tc superconductors. Recent ab inito calculations have assigned the high-Tc superconductivity to a correlation-enhanced electron--phonon coupling mechanism, stimulating the prediction and synthesis of new superconductor candidates among mixed-valent thallium perovskites. Existing superconductivity has meant that research has mainly focused on hole-doped compounds, leaving electron-doped compounds relatively unexplored. Here we demonstrate through ab inito calculations that BBO emerges as a topological insulator (TI) in the electron-doped region, where the spin-orbit coupling (SOC) effect is significant.…
Unraveling materials Berry curvature and Chern numbers from real-time evolution of Bloch states
2019
Materials can be classified by the topological character of their electronic structure and, in this perspective, global attributes immune to local deformations have been discussed in terms of Berry curvature and Chern numbers. Except for instructional simple models, linear response theories have been ubiquitously employed in calculations of topological properties of real materials. Here we propose a completely different and versatile approach to get the topological characteristics of materials by calculating physical observables from the real-time evolving Bloch states: the cell-averaged current density reveals the anomalous velocities whose integration leads to the conductivity quantum. Re…
Probing the bond order wave phase transitions of the ionic Hubbard model by superlattice modulation spectroscopy
2017
An exotic phase, the bond order wave, characterized by the spontaneous dimerization of the hopping, has been predicted to exist sandwiched between the band and Mott insulators in systems described by the ionic Hubbard model. Despite growing theoretical evidences, this phase still evades experimental detection. Given the recent realization of the ionic Hubbard model in ultracold atomic gases, we propose here to detect the bond order wave using superlattice modulation spectroscopy. We demonstrate, with the help of time-dependent density-matrix renormalization group and bosonization, that this spectroscopic approach reveals characteristics of both the Ising and Kosterlitz-Thouless transitions …