Search results for "integrated circuit"

showing 10 items of 130 documents

Heavy-Ion Microbeam Studies of Single-Event Leakage Current Mechanism in SiC VD-MOSFETs

2020

Heavy-ion microbeams are employed for probing the radiation-sensitive regions in commercial silicon carbide (SiC) vertical double-diffused power (VD)-MOSFETs with micrometer accuracy. By scanning the beam spot over the die, a spatial periodicity was observed in the leakage current degradation, reflecting the striped structure of the power MOSFET investigated. Two different mechanisms were observed for degradation. At low drain bias (gate and source grounded), only the gate-oxide (at the JFET or neck region) is contributing in the ion-induced leakage current. For exposures at drain–source bias voltages higher than a specific threshold, additional higher drain leakage current is observed in t…

Nuclear and High Energy PhysicsMaterials sciencemicrobeamsilicon carbide (SiC) vertical double-diffused power(VD)-MOSFETleakage current degradation01 natural sciencesDie (integrated circuit)chemistry.chemical_compoundpuolijohteet0103 physical sciencesMOSFETSilicon carbideNuclear Physics - ExperimentPower semiconductor deviceElectrical and Electronic EngineeringPower MOSFETsingle-event effect (SEE)010308 nuclear & particles physicsbusiness.industryionisoiva säteilyHeavy ion; leakage current degradation; microbeam; silicon carbide (SiC) vertical double-diffused power(VD)-MOSFET; single-event effect (SEE); single-event leakage current (SELC)JFETSELCMicrobeamSiC VD-MOSFET620single event effectsäteilyfysiikkaNuclear Energy and Engineeringchemistryheavy-ionOptoelectronicsddc:620Heavy ionbusinesssingle-event leakage current (SELC)Voltage
researchProduct

The MuPix System-on-Chip for the Mu3e Experiment

2016

Nuclear instruments & methods in physics research / A 845, 194 - 198 (2016). doi:10.1016/j.nima.2016.06.095

Nuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsFOS: Physical sciencesIntegrated circuit53001 natural sciencesHigh Energy Physics - Experimentlaw.inventionHigh Energy Physics - Experiment (hep-ex)Opticslaw0103 physical sciencesddc:530System on a chipDetectors and Experimental Techniques010306 general physicsInstrumentationphysics.ins-detPhysicsPixelAnalogue electronics010308 nuclear & particles physicsbusiness.industryhep-exHigh voltageInstrumentation and Detectors (physics.ins-det)ChipCMOSbusinessParticle Physics - ExperimentLepton
researchProduct

Performance of the front-end electronics of the ANTARES neutrino telescope

2010

ANTARES is a high-energy neutrino telescope installed in the Mediterranean Sea at a depth of 2475 m. It consists of a three-dimensional array of optical modules, each containing a large photomultiplier tube. A total of 2700 front-end ASICs named Analogue Ring Samplers (ARS) process the phototube signals, measure their arrival time, amplitude and shape as well as perform monitoring and calibration tasks. The ARS chip processes the analogue signals from the optical modules and converts information into digital data. All the information is transmitted to shore through further multiplexing electronics and an optical link. This paper describes the performance of the ARS chip; results from the fu…

Nuclear and High Energy PhysicsPhotomultiplier[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Physics::Instrumentation and DetectorsOptical linkDigital dataFOS: Physical sciencesAnalog-to-digital converterNeutrino telescope01 natural sciencesMultiplexinglaw.inventionPhototubeApplication-specific integrated circuitPhotomultiplier tubelawASICs0103 physical sciences14. Life underwater010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)InstrumentationPhysics010308 nuclear & particles physicsbusiness.industryASICAstrophysics::Instrumentation and Methods for AstrophysicsElectrical engineeringCIRCUITFront-end electronicsChip[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Física nuclearUNDERWATER DETECTORasic; front-end electronics; neutrino telescope; photomultiplier tubeAstrophysics - Instrumentation and Methods for AstrophysicsbusinessSYSTEMNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

AGATA-Advanced GAmma Tracking Array

2012

WOS: 000300864200005

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPulse-shape and gamma-ray tracking algorithmsFOS: Physical sciencesSemiconductor detector performance and simulationsIntegrated circuit[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Tracking (particle physics)gamma-Ray tracking01 natural sciencesPulse-shape and γ-ray tracking algorithmslaw.inventionData acquisitionlaw0103 physical sciencesddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsγ-Ray spectroscopyNuclear ExperimentInstrumentationDigital signal processingEvent reconstructiongamma-Ray spectroscopyPhysicssezeleSpectrometerSpectrometers010308 nuclear & particles physicsbusiness.industryDetectorAGATA Digital signals HPGe detectors Pulse-shape Ray trackingHPGe detectorsAlgorithms Crystals Germanium Semiconductor detectors Signal processing Spectrometry Tracking (position)γ-Ray trackingInstrumentation and Detectors (physics.ins-det)Digital signal processingAGATAFísica nuclearbusinessAGATAComputer hardware
researchProduct

Detector characterization and first coincidence tests of a Compton telescope based on LaBr3 crystals and SiPMs

2011

International audience; A Compton telescope for dose monitoring in hadron therapy consisting of several layers of continuous LaBr3 crystals coupled to silicon photomultiplier (SiPM) arrays is under development within the ENVISION project. In order to test the possibility of employing such detectors for the telescope, a detector head consisting of a continuous 16 mm×18 mm×5 mm LaBr3 crystal coupled to a SiPM array has been assembled and characterized, employing the SPIROC1 ASIC as readout electronics. The best energy resolution obtained at 511 keV is 6.5% FWHM and the timing resolution is 3.1 ns FWHM. A position determination method for continuous crystals is being tested, with promising res…

Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsCompton telescopeSiPM01 natural sciences7. Clean energyCoincidence030218 nuclear medicine & medical imaginglaw.inventionTelescope03 medical and health sciencesHadron therapy0302 clinical medicineOpticsSilicon photomultiplierApplication-specific integrated circuitlaw0103 physical sciencesCompton imaging[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det][SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsInstrumentationPhysicsContinuous crystal010308 nuclear & particles physicsbusiness.industryResolution (electron density)DetectorMPPCG-APDLaBr3Full width at half maximumbusiness
researchProduct

First Compton telescope prototype based on continuous LaBr3-SiPM detectors

2013

Abstract A first prototype of a Compton camera based on continuous scintillator crystals coupled to silicon photomultiplier (SiPM) arrays has been successfully developed and operated. The prototype is made of two detector planes. The first detector is made of a continuous 16×18×5 mm 3 LaBr 3 crystal coupled to a 16-elements SiPM array. The elements have a size of 3×3 mm 3 in a 4.5×4.05 mm 2 pitch. The second detector, selected by availability, consists of a continuous 16×18×5 mm 3 LYSO crystal coupled to a similar SiPM array. The SPIROC1 ASIC is employed in the readout electronics. Data have been taken with a 22 Na source placed at different positions and images have been reconstructed with…

Nuclear and High Energy Physicsmedicine.medical_specialtyCompton telescopeIntegrated circuitScintillator01 natural sciences7. Clean energyLyso-030218 nuclear medicine & medical imaginglaw.invention03 medical and health sciences0302 clinical medicineSilicon photomultiplierOpticslaw0103 physical sciencesmedicineMedical physicsInstrumentationImage resolutionPhysics010308 nuclear & particles physicsbusiness.industryDetectorCompton scatteringbusinessNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Halide perovskite amplifiers integrated in polymer waveguides

2016

Semiconductor organometallic halide perovskites (CH 3 NH 3 PbX 3 , X=Cl, Br, I) (HPVK) have emerged as a new promising material able to improve the optoelectronic technology performance. Although this material has mostly been applied to improve the efficiency of photovoltaic devices, it also shows amazing properties for photonic applications. In particular, HPVK exhibits high photoluminescence (PL) quantum yield (up to 70%) at room temperature together with a tunable band-gap controlled by its chemical composition. In addition, since HPVKs is deposited in solution at room conditions, it can be easily incorporated in different photonic structures to efficiently exploit its emission propertie…

Optical amplifierSilicon photonicsMaterials sciencebusiness.industryPhotonic integrated circuit02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesWaveguide (optics)0104 chemical sciencesOptoelectronicsSemiconductor optical gainSpontaneous emissionStimulated emissionPhotonics0210 nano-technologybusiness2016 18th International Conference on Transparent Optical Networks (ICTON)
researchProduct

MALTA: a CMOS pixel sensor with asynchronous readout for the ATLAS High-Luminosity upgrade

2018

Radiation hard silicon sensors are required for the upgrade of the ATLAS tracking detector for the High- Luminosity Large Hadron Collider (HL-LHC) at CERN. A process modification in a standard 0.18 μm CMOS imaging technology combines small, low-capacitance electrodes (∼2 fF for the sensor) with a fully depleted active sensor volume. This results in a radiation hardness promising to meet the requirements of the ATLAS ITk outer pixel layers (1.5 × 1015 neq /cm2 ), and allows to achieve a high signal-to-noise ratio and fast signal response, as required by the HL-LHC 25 ns bunch crossing structure. The radiation hardness of the charge collection to Non-Ionizing Energy Loss (NIEL) has been previ…

PhysicsActive pixel sensors ; CMOS integrated circuits ; position sensitive particle detectors ; radiation effects ; radiation hardening (electronics) ; semiconductor detectors ; solid state circuit designPixelPhysics::Instrumentation and Detectors010308 nuclear & particles physicsbusiness.industryDetectorHigh Luminosity Large Hadron Collider01 natural sciencesCapacitance030218 nuclear medicine & medical imagingSemiconductor detector03 medical and health sciences0302 clinical medicineCMOSNuclear electronics0103 physical sciencesbusinessRadiation hardeningComputer hardware
researchProduct

Monte Carlo Simulation of Electron Dynamics in Doped Semiconductors Driven by Electric Fields: Harmonic Generation, Hot-Carrier Noise and Spin Relaxa…

2011

In solid state electronics the miniaturization of integrated circuits implies that, even at moderate applied voltages, the components can be exposed to very intense electric fields. Advances in electronics push the devices to operate also under cyclostationary conditions, i.e. under large-signal and time-periodic conditions. A main consequence of this fact is that circuits exhibit a strongly nonlinear behavior. Furthermore, semiconductor based devices are always imbedded into a noisy environment that could strongly affect their performance, setting the lower limit for signal detection in electronic circuits. For this reason, to fully understand the complex scenario of the nonlinear phenomen…

PhysicsCondensed matter physicsSpintronicsMonte Carlo methodIntegrated circuitNoise (electronics)Settore FIS/03 - Fisica Della Materialaw.inventionlawVelocity overshootHigh harmonic generationRelaxation (physics)ElectronicsDoped SemiconductorsMonte Carlo method Harmonic Generation Electronic noise Electron Spin relaxation
researchProduct

Determination of IBIS mask transmission matrix

2005

The high-angular resolution imager IBIS is one of the two main instruments aboard the ESA INTEGRAL satellite launched in October 2002. IBIS uses coded aperture mask technique in order to provide the required imaging capabilities for energies between 15 and 10 MeV.The precise knowledge of the coded mask response function critically determine the IBIS imaging performances. In this paper, we present a general description of the IBIS coded mask design together with its main features. Transparency and homogeneity values of the IBIS mask flight model from our laboratory measurements are presented with indication of the instrumental set-up used and accuracy achieved. Mask transmission as a functio…

PhysicsIbisNuclear and High Energy PhysicsPhotonbiologybusiness.industryAstrophysics::High Energy Astrophysical PhenomenaMonte Carlo methodAstrophysics::Instrumentation and Methods for Astrophysicsbiology.organism_classificationIntegrated circuit layoutOpticsTransmission (telecommunications)SatelliteCoded aperturebusinessInstrumentationEnergy (signal processing)Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct