Search results for "interactions."

showing 10 items of 1865 documents

Combining molecular microbial ecology with ecophysiology and plant genetics for a better understanding of plant-microbial communities' interactions i…

2013

18 pages; International audience

0106 biological sciencesEcophysiologyquantitative geneticsecophysiologyPlant genetics[ SDV.SA.SDS ] Life Sciences [q-bio]/Agricultural sciences/Soil studyBiology[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil study01 natural sciences03 medical and health sciencesplant–microbes interactionsMicrobial ecologyBotany[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisComputingMilieux_MISCELLANEOUS030304 developmental biology2. Zero hunger0303 health sciencesRhizosphere[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyEcologymodelingQuantitative geneticsMicrobial population biology[SDE.BE]Environmental Sciences/Biodiversity and Ecologymicrobial communityrhizosphere010606 plant biology & botany[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest

2020

Background: Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture. Results: Using a combination of…

0106 biological sciencesFil·loxeraPhysiology[SDV]Life Sciences [q-bio]Introduced speciesPlant Science01 natural sciencesGenomeGene duplicationsStructural BiologyVitislcsh:QH301-705.5ComputingMilieux_MISCELLANEOUS2. Zero hunger0303 health scienceseducation.field_of_studyHost plant interactionsGenomeEndosymbiosisbiologyfood and beveragesBiological SciencesBiological EvolutionGeneral Agricultural and Biological SciencesRootstockInfectionDaktulosphaira vitifoliaeBiotechnologyResearch ArticlePopulation010603 evolutionary biologyGeneral Biochemistry Genetics and Molecular BiologyHemiptera03 medical and health sciencesGeneticsInsect pestsAnimalsPlagues d'insectesAdaptationBiological invasionsGenomeseducationPhylloxeraEcology Evolution Behavior and Systematics030304 developmental biologyObligateHuman GenomeViticulturaCell Biology15. Life on landbiology.organism_classificationBiologicalEffectorsClimate Actionlcsh:Biology (General)13. Climate actionEvolutionary biologyArthropod genomesPhylloxeraAdaptationIntroduced SpeciesInsectAnimal DistributionDevelopmental Biology
researchProduct

Warming-related shifts in the distribution of two competing coastal wrasses

2016

13 páginas, 5 figuras , 1 tabla, 1 apéndice con tres tablas y una figura

0106 biological sciencesFood ChainRange (biology)[SDE.MCG]Environmental Sciences/Global ChangesCorisThalassoma pavoDistributional shiftsWrasseInterspecific interactionsAquatic ScienceOceanography010603 evolutionary biology01 natural sciencesGlobal WarmingWrassesMediterranean seaAbundance (ecology)Aquatic scienceAnimalsSeawater14. Life underwaterManyGLMDemographyTemperaturesDistributional shiftbiologyEcology010604 marine biology & hydrobiologyGlobal warmingFishesTemperatureGeneral MedicineInterspecific competitionbiology.organism_classificationPollutionPerciformesCoastal waterOceanographyGeographyFish13. Climate actionMediterranean seaCoastal watersInterspecific interactionWarmingEnvironmental Monitoring
researchProduct

Hyperparasitoids exploit herbivore-induced plant volatiles during host location to assess host quality and non-host identity

2019

Although consumers often rely on chemical information to optimize their foraging strategies, it is poorly understood how top carnivores above the third trophic level find resources in heterogeneous environments. Hyperparasitoids are a common group of organisms in the fourth trophic level that lay their eggs in or on the body of other parasitoid hosts. Such top carnivores use herbivore-induced plant volatiles (HIPVs) to find caterpillars containing parasitoid host larvae. Hyperparasitoids forage in complex environments where hosts of different quality may be present alongside non-host parasitoid species, each of which can develop in multiple herbivore species. Because both the identity of th…

0106 biological sciencesFood ChainSDG 16 - PeaceForagingWaspsContext (language use)010603 evolutionary biology01 natural sciencesMultitrophic interactionParasitoidPlant-Microbe-Animal Interactions–Original ResearchHost-Parasite InteractionsHyperparasitoid foraging behaviorFourth trophic level organismsMultitrophic interactionsFourth trophic level organismButterflieAnimalsNon-host parasitoid specieHerbivoryLaboratory of EntomologyEcology Evolution Behavior and SystematicsTrophic levelPieris brassicaeHerbivorebiologyHost (biology)EcologyAnimal010604 marine biology & hydrobiologySDG 16 - Peace Justice and Strong InstitutionsnationalHost-Parasite Interactionbiology.organism_classificationCotesia glomerataPE&RCLaboratorium voor Entomologie/dk/atira/pure/sustainabledevelopmentgoals/peace_justice_and_strong_institutionsJustice and Strong InstitutionsPlant-based food webLarvaEPSButterfliesNon-host parasitoid speciesOecologia
researchProduct

FOOD MAKES YOU A TARGET: DISENTANGLING GENETIC, PHYSIOLOGICAL, AND BEHAVIORAL EFFECTS DETERMINING SUSCEPTIBILITY TO INFECTION

2010

Genetics, physiology, and behavior are all expected to influence the susceptibility of hosts to parasites. Furthermore, interactions between genetic and other factors are suggested to contribute to the maintenance of genetic polymorphism in resistance when the relative susceptibility of host genotypes is context dependent. We used a maternal sibship design and long- and short-term food deprivation treatments to test the role of family-level genetic variation, body condition, physiological state, and foraging behavior on the susceptibility of Lymnaea stagnalis snails to infection by a trematode parasite that uses chemical cues to locate its hosts. In experimental exposures, we found that sna…

0106 biological sciencesFood deprivationForagingLymnaea stagnalisSnail010603 evolutionary biology01 natural sciencesHost-Parasite Interactions03 medical and health sciencesbiology.animalparasitic diseasesGenetic variationGenotypeGeneticsAnimalsParasite hostingFinlandEcology Evolution Behavior and SystematicsLymnaea030304 developmental biologyEchinostomatidae0303 health sciencesbiologyEcologyGenetic VariationFeeding Behaviorbiology.organism_classificationFood DeprivationGeneral Agricultural and Biological SciencesBody conditionEvolution
researchProduct

Host manipulation in the face of environmental changes: Ecological consequences

2015

Several parasite species, particularly those having complex life-cycles, are known to induce phenotypic alterations in their hosts. Most often, such alterations appear to increase the fitness of the parasites at the expense of that of their hosts, a phenomenon known as “host manipulation”. Host manipulation can have important consequences, ranging from host population dynamics to ecosystem engineering. So far, the importance of environmental changes for host manipulation has received little attention. However, because manipulative parasites are embedded in complex systems, with many interacting components, changes in the environment are likely to affect those systems in various ways. Here, …

0106 biological sciencesFuture studiesPopulationBiologyEnvironment010603 evolutionary biology01 natural sciencesSpecial section: Impact of Environmental changes on Infectious Diseases (IECID)Ecosystems03 medical and health scienceslcsh:Zoology[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisEcosystemlcsh:QL1-991educationHost–parasite interactions030304 developmental biologyTrophic level0303 health scienceseducation.field_of_study[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyEcologyHost (biology)Host manipulationInfectious DiseasesAnimal Science and ZoologyParasitology[SDE.BE]Environmental Sciences/Biodiversity and EcologyGlobal changes[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/SymbiosisInternational Journal for Parasitology: Parasites and Wildlife
researchProduct

Prevalence of infection as a predictor of multiple genotype infection frequency in parasites with multiple-host life cycle.

2012

In nature, parasites commonly share hosts with other conspecific parasite genotypes. While adult parasites typically show aggregated distribution in their final hosts, aggregation of clonal parasite genotypes in intermediate hosts, such as those of trematodes in molluscs, is not generally known. However, infection of a host by multiple parasite genotypes has significant implications for evolution of virulence and host-parasite coevolution. Aggregated distribution of the clonal stages can increase host mortality and reduce larval output of each infecting genotype through interclonal competition, and therefore have significant implications for parasite epidemiology. The aim of this study was …

0106 biological sciencesGenotypemedia_common.quotation_subjectZoologySnailBiology010603 evolutionary biology01 natural sciencesCompetition (biology)Host-Parasite Interactions03 medical and health sciencesbiology.animalGenotypeParasite hostingAnimalsEcology Evolution Behavior and SystematicsFreshwater mollusc030304 developmental biologymedia_commonLymnaea0303 health sciencesHost (biology)Bayes Theorembiology.organism_classification3. Good healthAnimal ecologyAnimal Science and ZoologyTrematodaTrematodaMicrosatellite RepeatsThe Journal of animal ecology
researchProduct

Acting locally - affecting globally: RNA sequencing of gilthead sea bream with a mild Sparicotyle chrysophrii infection reveals effects on apoptosis,…

2019

[Background] Monogenean flatworms are the main fish ectoparasites inflicting serious economic losses in aquaculture. The polyopisthocotylean Sparicotyle chrysophrii parasitizes the gills of gilthead sea bream (GSB, Sparus aurata) causing anaemia, lamellae fusion and sloughing of epithelial cells, with the consequent hypoxia, emaciation, lethargy and mortality. Currently no preventive or curative measures against this disease exist and therefore information on the host-parasite interaction is crucial to find mitigation solutions for sparicotylosis. The knowledge about gene regulation in monogenean-host models mostly comes from freshwater monopysthocotyleans and almost nothing is known about …

0106 biological sciencesGillGillsApoptosis01 natural sciencesTranscriptomeSparus aurataGene expression0303 health sciencesHigh-Throughput Nucleotide Sequencingmedicine.anatomical_structureLiverHelminthiasis AnimalMonogeneaBiotechnologyResearch ArticleFish Proteinsanimal structureslcsh:QH426-470lcsh:BiotechnologyFisheriesSpleenBiologyMicrobiologyHost-Parasite Interactions03 medical and health sciencesImmune systemIllumina RNA-seqImmunitylcsh:TP248.13-248.65GeneticsmedicineAutophagyAnimals14. Life underwaterPlatelet activationImmune responseTranscriptomics030304 developmental biologyCell ProliferationSequence Analysis RNASparus aurata Sparicotyle chrysophrii Gills Monogenea Ectoparasites Illumina RNA-seq Transcriptomics Apoptosis Immune responseGene Expression ProfilingAquatic animalSea Breamlcsh:GeneticsGene Expression RegulationPlatyhelminthsSparicotyle chrysophriiEctoparasitesSpleen010606 plant biology & botany
researchProduct

Root fungal endophytes: identity, phylogeny and roles in plant tolerance to metal stress.

2021

International audience; Metal trace elements accumulate in soils mainly because of anthropic activities, leading living organisms to develop strategies to handle metal toxicity. Plants often associate with root endophytic fungi, including nonmycorrhizal fungi, and some of these organisms are associated with metal tolerance. The lack of synthetic analyses of plant-endophyte-metal tripartite systems and the scant consideration for taxonomy led to this review aiming (1) to inventory non-mycorrhizal root fungal endophytes described with respect to their taxonomic diversity and (2) to determine the mutualistic roles of these plant-fungus associations under metal stress. More than 1500 species in…

0106 biological sciencesHypocrealesMetal toxicity[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics Phylogenetics and taxonomy01 natural sciencesPlant RootsPlant use of endophytic fungi in defense03 medical and health sciencesAscomycotaPhylogeneticsBotanyGeneticsEndophytesPleosporalesSymbiosisEcology Evolution Behavior and SystematicsPhylogeny030304 developmental biology0303 health sciencesbiologyFungi15. Life on landPlantsbiology.organism_classificationInfectious Diseases[SDE]Environmental SciencesTaxonomy (biology)Metallic trace element Fungal endophytes Taxonomy Accumulation Mutualism Plant-fungi interactions010606 plant biology & botanyFungal biology
researchProduct

Exploiting chemical ecology to manage hyperparasitoids in biological control of arthropod pests

2020

Abstract Insect hyperparasitoids are fourth trophic level organisms that commonly occur in terrestrial food webs, yet they are relatively understudied. These top‐carnivores can disrupt biological pest control by suppressing the populations of their parasitoid hosts, leading to pest outbreaks, especially in confined environments such as greenhouses where augmentative biological control is used. There is no effective eco‐friendly strategy that can be used to control hyperparasitoids. Recent advances in the chemical ecology of hyperparasitoid foraging behavior have opened opportunities for manipulating these top‐carnivores in such a way that biological pest control becomes more efficient. We p…

0106 biological sciencesIntegrated pest managementBiological pest controlReview01 natural sciencespush-pullhyperparasitoid foraginginfochemical-based strategieLaboratory of Entomology/dk/atira/pure/sustainabledevelopmentgoals/industry_innovation_and_infrastructureinfochemical‐based strategiesTrophic levelEcologyPlan_S-Compliant-TAParasietenEnvironmental resource managementherbivore‐induced plant volatilespush‐pullGeneral MedicineChemical ecologyfourth trophic level organismherbivore-induced plant volatileinternationalSDG 9 - IndustryFood ChainForagingDuurzame gewasbeschermingEarly detectionmultitrophic interactionsBiologyHost-Parasite InteractionsGeleedpotigenAnimalsmultitrophic interactionfourth trophic level organismsInnovationPest Control BiologicalArthropodsbusiness.industryherbivore-induced plant volatilesLaboratorium voor Entomologiebiology.organism_classification010602 entomologyInsect Scienceand InfrastructureSDG 9 - Industry Innovation and InfrastructurePEST analysisArthropodEPSinfochemical-based strategiesbusinessAgronomy and Crop Science010606 plant biology & botanyPest Management Science
researchProduct